

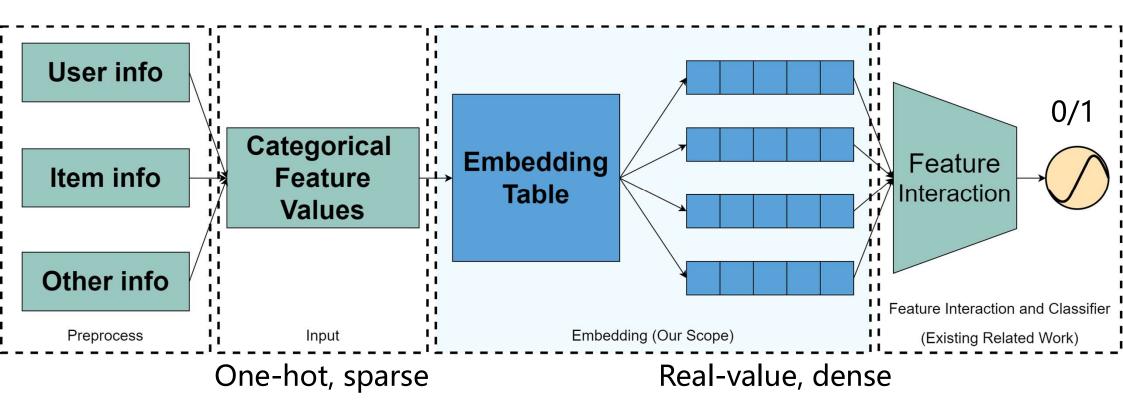
OptEmbed: Learning Optimal Embedding Table for Click-through Rate Prediction

Fuyuan Lyu^{1,2*}, Xing Tang^{2*}, Hong Zhu², Huifeng Guo², Yingxue Zhang³, Ruiming Tang², Xue Liu¹

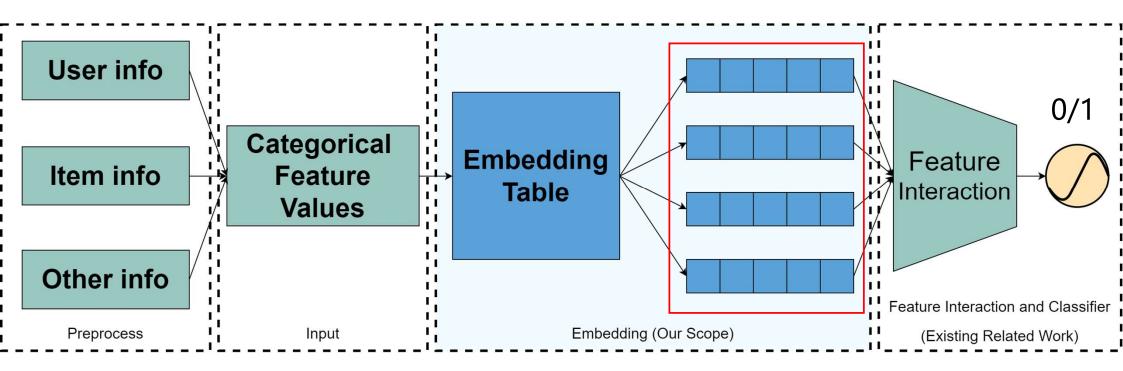
¹School of Computer Science, McGill University, Montreal, Canada ²Huawei Noah's Ark Lab, Shenzhen, China ³Huawei Noah's Ark Lab, Montreal, Canada

Presenter: Fuyuan Lyu

Background



Background



Is this optimal in terms of performance and efficiency?

A 2d tensor $E \in R^{|f| \times D}$ Feature size $|f| \approx 10^7$ Embed Dim $D \approx 64$

The Definition of "Optimal"

A 2d tensor $E \in R^{|f| \times D}$ Feature size $|f| \approx 10^7$ Embed Dim $D \approx 64$ **1.** No Redundant Features in |f|.

Redundant feature both consumes additional memory and is detrimental to model performance [1].

2. Embedding Dimension Flexible in D.

Feature with small cardinality may induce overfitting, while feature with large cardinality may induce underfitting [2,3].

3. Hardware Friendly

Sparse embedding table requires extra storage and decoding time, which is not suitable in practice [4,5].

^[1] Wang, Yejing, et al. "Autofield: Automating feature selection in deep recommender systems." Proceedings of the ACM Web Conference 2022. 2022.

 ^[2] Shi, Hao-Jun Michael, et al. "Compositional embeddings using complementary partitions for memory-efficient recommendation systems." *Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.* 2020.
[3] Zhao, Xiangyu, et al. "Autodim: Field-aware embedding dimension searchin recommender systems." *Proceedings of the Web Conference 2021.* 2021.

^[4] Deng, Wei, et al. "DeepLight: Deep lightweight feature interactions for accelerating CTR predictions in ad serving." Proceedings of the 14th ACM international conference on Web search and data mining. 2021.

^[5] Liu, Siyi, et al. "Learnable Embedding sizes for Recommender Systems." International Conference on Learning Representations. 2020.

Comparison with Other Methods

Approach	R1: N.R.F.	R2: E.D.F.	R3: H.F.
MDE [9]	×	\checkmark	\checkmark
DNIS [5]	×	~	\checkmark
AutoDim [43]	×	\checkmark	\checkmark
AutoField [35]	~	×	\checkmark
QR [32]	\checkmark	×	\checkmark
PEP [23]	\checkmark	\checkmark	×
OptEmbed	~	\checkmark	\checkmark

Table 1: Comparison of embedding learning approaches.

N.R.F, E.D.F. and *H.F.* are abbreviations for No Redundant Feature, Embedding Dimension Flexible and Hardware Friendly.

No previous work satisfies all three requirements!

CTR Prediction Formulation

For n field one-hot encoded raw input:

 $x = [x_{(1)}, x_{(2)}, \dots, x_{(n)}]$

Transform into dense vector:

 $e_{(i)} = E \times x_{(i)}$

Concatenate all embeddings:

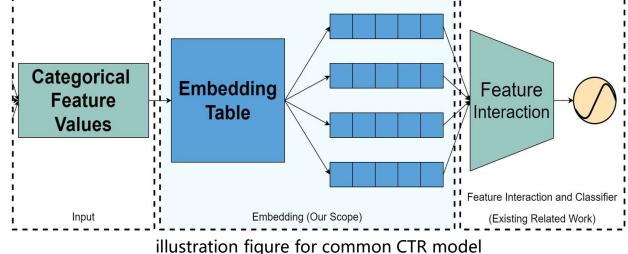
$$e = [e_{(1)}, e_{(2)}, \dots, e_{(n)}] = E \times x$$

Fed into feature interaction and classification layer:

$$\hat{y} = \mathcal{F}(\mathbf{E} \times x | \mathbf{W})$$

Adopt the cross-entropy loss:

$$CE(y, \hat{y}) = y \log(\hat{y}) + (1 - y) \log(1 - \hat{y}).$$



Formulate the CTR prediction problem: **Goal A** $\min_{\mathbf{E},\mathbf{W}} \mathcal{L}_{\mathrm{CE}}(\mathcal{D}|\{\mathbf{E},\mathbf{W}\}) = -\frac{1}{|\mathcal{D}|} \sum_{(\mathbf{x},y)\in\mathcal{D}} \mathrm{CE}(y,\mathcal{F}(\mathbf{E}\times\mathbf{x}|\mathbf{W}))$

Decompose the original single embedding table into a series of field-wise embedding table:

$$E = [E_{(1)}, E_{(2)}, \dots, E_{(n)}], E_{(i)} \in \mathbb{R}^{|f_{(i)}| \times D_{(i)}}$$

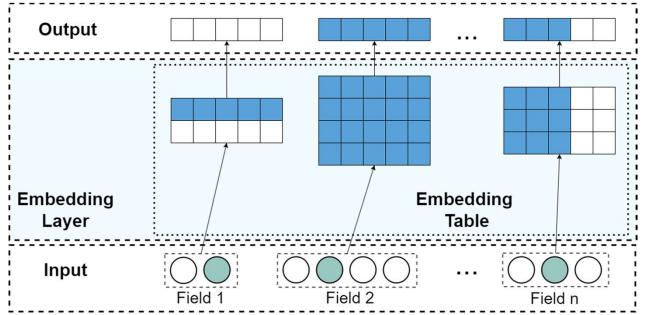
For R1: No Redundant Features:

$$\sum_{i=1}^{n} |f_{(i)}| \le |f|$$

R2: Embedding Dimension Flexible:

Choose different $D_{(i)}$

R3: Hardware Friendly is naturally satisfied.



Re-formulate the CTR prediction problem: Goal B

$$\min_{\mathbf{E}^*, \mathbf{W}} \mathcal{L}_{CE}(\mathcal{D} | \{ \mathbf{E}^*, \mathbf{W} \}), \ \mathbf{E}^* = [\mathbf{E}_{(1)}, \mathbf{E}_{(2)}, \cdots, \mathbf{E}_{(n)}],$$

s.t. $\mathbf{E}_{(i)} \in \mathbb{R}^{|f_{(i)}| \times D_{(i)}}, \ \sum_{i=1}^n |f_{(i)}| \le |f|, \ D_{(i)} \le D, \ \forall i \le n.$

Decompose the original single embedding table into a series of field-wise embedding table:

$$E = [E_{(1)}, E_{(2)}, \dots, E_{(n)}], E_{(i)} \in \mathbb{R}^{|f_{(i)}| \times D_{(i)}}$$

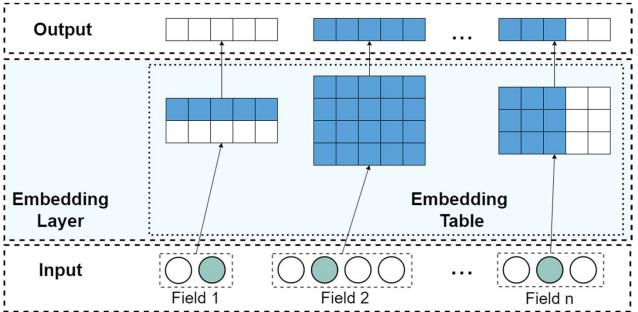
For R1: No Redundant Features:

$$\sum_{i=1}^{n} |f_{(i)}| \le |f|$$

R2: Embedding Dimension Flexible:

Choose different $D_{(i)}$

R3: Hardware Friendly are naturally satisfied.

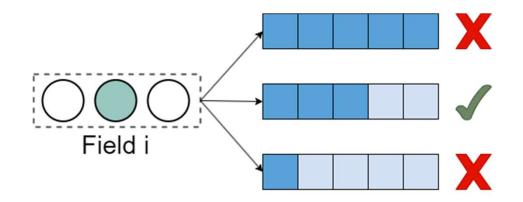


Re-formulate the CTR prediction problem: **Goal B**

$$\min_{\mathbf{E}^*, \mathbf{W}} \mathcal{L}_{CE}(\mathcal{D} | \{ \mathbf{E}^*, \mathbf{W} \}), \ \mathbf{E}^* = [\mathbf{E}_{(1)}, \mathbf{E}_{(2)}, \cdots, \mathbf{E}_{(n)}],$$

to directly optimize $|f_{(i)}| \leq |f|, \ D_{(i)} \leq D, \ \forall i \leq n.$

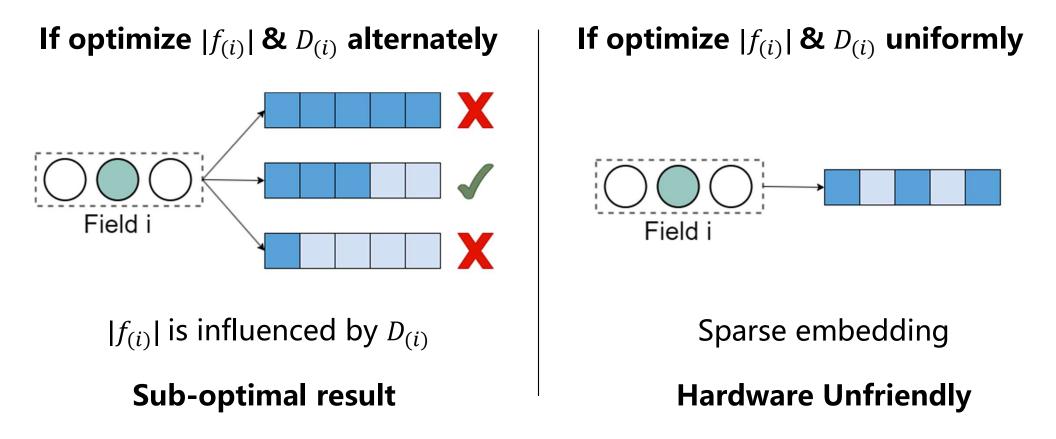
If optimize $|f_{(i)}| \& D_{(i)}$ alternately



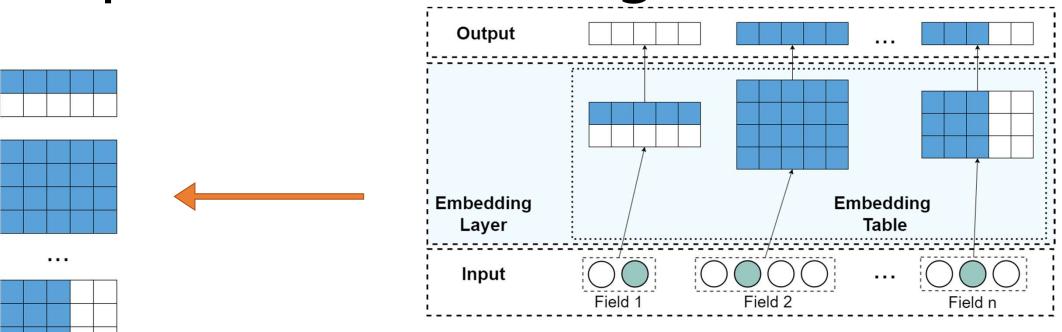
 $|f_{(i)}|$ is influenced by $D_{(i)}$

Sub-optimal result

Hard to directly optimize!

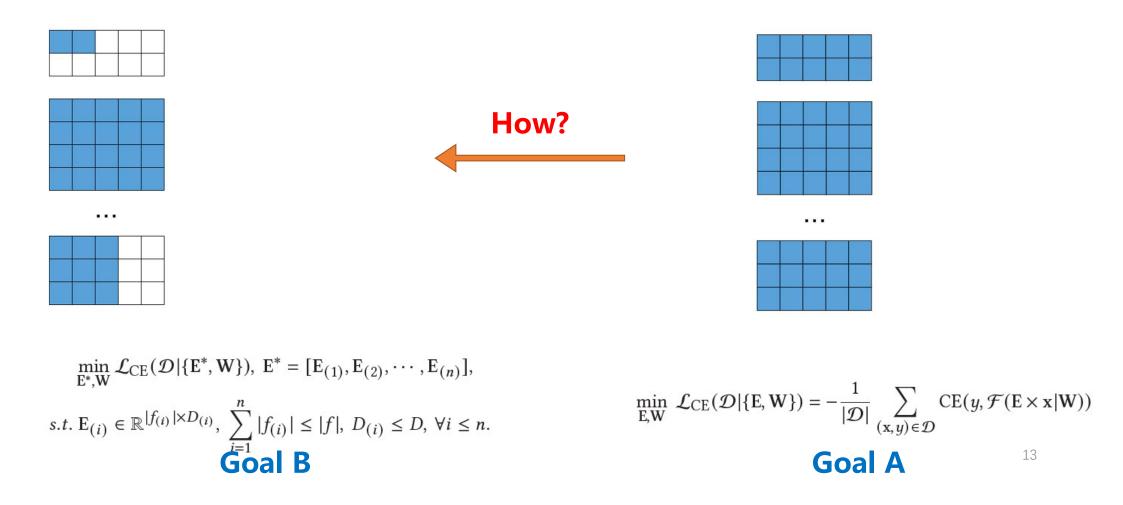


Hard to directly optimize!

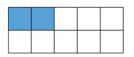


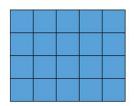
$$\begin{split} \min_{\mathbf{E}^*, \mathbf{W}} \mathcal{L}_{\text{CE}}(\mathcal{D} | \{ \mathbf{E}^*, \mathbf{W} \}), \ \mathbf{E}^* &= [\mathbf{E}_{(1)}, \mathbf{E}_{(2)}, \cdots, \mathbf{E}_{(n)}], \\ s.t. \ \mathbf{E}_{(i)} \in \mathbb{R}^{|f_{(i)}| \times D_{(i)}}, \ \sum_{\substack{i=1 \\ \textbf{Goal B}}}^n |f_{(i)}| \leq |f|, \ D_{(i)} \leq D, \ \forall i \leq n. \end{split}$$

12

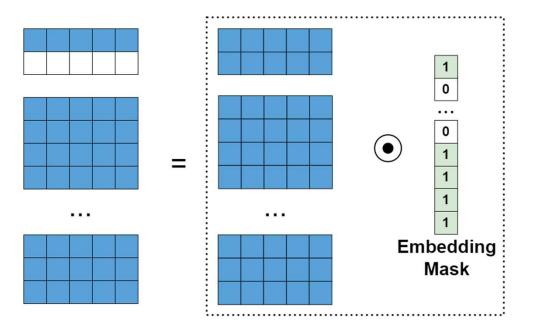


OptEmbed

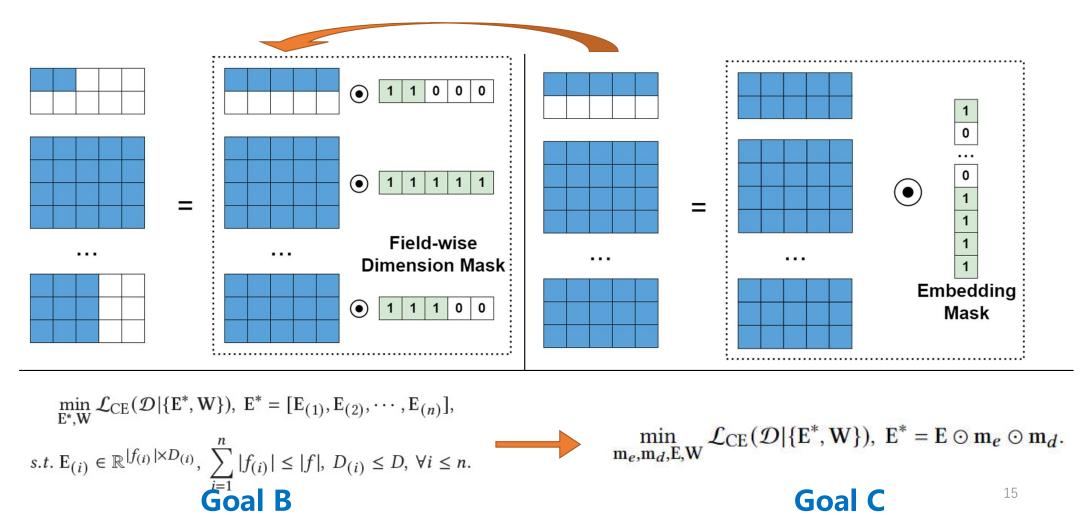




...



OptEmbed



OptEmbed

In practice, we introduce two masks:

 $\min_{\mathbf{m}_e,\mathbf{m}_d,\mathbf{E},\mathbf{W}} \mathcal{L}_{\mathrm{CE}}(\mathcal{D}|\{\mathbf{E}^*,\mathbf{W}\}), \ \mathbf{E}^* = \mathbf{E} \odot \mathbf{m}_e \odot \mathbf{m}_d.$

Goal C

Field-wise dimension mask:

 $m_d \in \{0,1\}^{D \times n}$

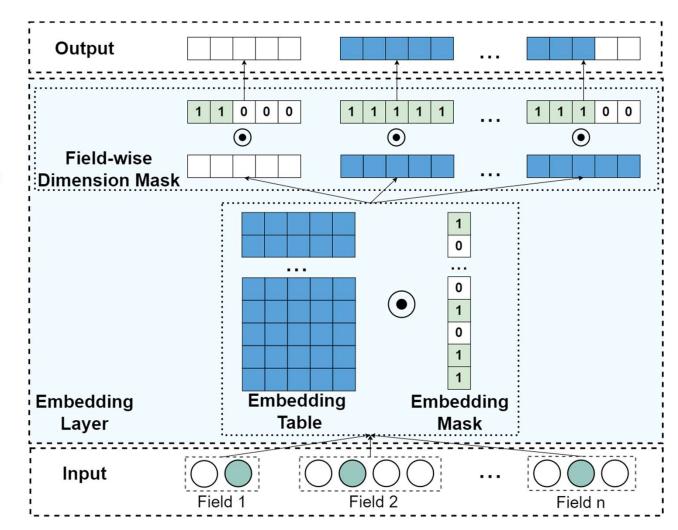
Embedding mask:

 $m_e \in \{0,1\}^{|f|}$

Three phases:

- 1. Redundant Embedding Pruning
- 2. Embedding Dimension Search

3. Parameter Re-training



Experiment

Backbone Models:

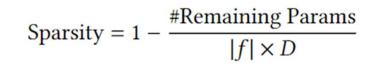
DeepFM[1], DCN[2], FNN[3], IPNN[4]

Dataset	#samples	#field	#values	pos ratio
Criteo	4.6×10^{7}	39	6.8×10^{6}	0.23
	4.0×10^{7}	24	4.4×10^{6}	0.17
KDD12	1.5×10^8	11	6.0×10^{6}	0.06

Baseline Methods:

AutoDim[5], AutoField[6], QR[7], PEP[8]

Evaluation Metrics: AUC, Logloss and Sparsity



[1] Guo, Huifeng, et al. "DeepFM: a factorization-machine based neural network for CTR prediction." Proceedings of the 26th International Joint Conference on Artificial Intelligence. 2017.

[2] Wang, Ruoxi, et al. "Deep & cross network for ad click predictions." Proceedings of the ADKDD'17. 2017. 1-7.

- [3] Zhang, Weinan, Tianming Du, and Jun Wang. "Deep learning over multi-field categorical data." European conference on information retrieval. Springer, Cham, 2016.
- [4] Qu, Yanru, et al. "Product-based neural networks for user response prediction." 2016 IEEE 16th International Conference on Data Mining (ICDM). IEEE, 2016.
- [5] Zhao, Xiangyu, et al. "Autodim: Field-aware embedding dimension searchin recommender systems." Proceedings of the Web Conference 2021. 2021.
- [6] Wang, Yejing, et al. "Autofield: Automating feature selection in deep recommender systems." Proceedings of the ACM Web Conference 2022. 2022.
- [7] Shi, Hao-Jun Michael, et al. "Compositional embeddings using complementary partitions for memory-efficient recommendation systems." *Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.* 2020. 1 [8] Liu, Siyi, et al. "Learnable Embedding sizes for Recommender Systems." *International Conference on Learning Representations.* 2020.

Result

Table 2: Overall Performance Comparison.

	Detect		DeepFM			DCN			FNN		IPNN		
	Dataset	AUC	Logloss	Sparsity	AUC	Logloss	Sparsity	AUC	Logloss	Sparsity	AUC	Logloss	Sparsity
	Original	0.8104	0.4409	-	0.8106	0.4408	-	0.8110	0.4404	-	0.8113	0.4401	-
~	AutoDim	0.8093	0.4420	0.8642	0.8096	0.4418	0.7917	0.8104	0.4410	0.7187	0.8103	0.4411	0.7179
ited	AutoField	0.8101	0.4412	0.0009	0.8108	0.4405	0.4108	0.8108	0.4406	0.6221	0.8111	0.4403	0.3941
Criteo	QR	0.8084	0.4444	0.5000	0.8103	0.4411	0.5000	0.8105	0.4408	0.5000	0.8102	0.4411	0.5000
	PEP	0.7980	0.4541	0.5010	0.8110	0.4404	0.5802	0.8108	0.4406	0.5802	0.8111	0.4402	0.5607
2×	OptEmbed	0.8105	0.4409	0.9684	0.8113	0.4402	0.8534	0.8114	0.4400	0.6710	0.8114	0.4401	0.7122
	Original	0.7884	0.3751	-	0.7894	0.3748	-	0.7896	0.3748	-	0.7898	0.3745	-
-	AutoDim	0.7843	0.3779	0.6936	0.7893	0.3744	0.5013	0.7894	0.3743	0.5017	0.7894	0.3743	0.3892
Avazu	AutoField	0.7866	0.3762	0.0020	0.7887	0.3748	0.0001	0.7892	0.3748	0.0001	0.7897	0.3744	0.0001
Av	QR	0.7762	0.3821	0.5000	0.7868	0.3766	0.5000	0.7857	0.3769	0.5000	0.7849	0.3781	0.5000
	PEP	0.7877	0.3754	0.4126	0.7896	0.3743	0.3016	0.7894	0.3744	0.3016	0.7897	0.3742	0.3016
	OptEmbed	0.7888^{*}	0.3750^{*}	0.3927	0.7901^{*}	0.3740	0.6840	0.7902*	0.3744	0.5563	0.7902	0.3740^{*}	0.4693
	Original	0.7962	0.1532	-	0.8010	0.1522	-	0.8008	0.1522	-	0.8007	0.1522	-
5	AutoDim	0.7886	0.1550	0.0029	0.8016	0.1520	0.1904	0.8012	0.1522	0.1669	0.8013	0.1521	0.2286
D1	AutoField	0.7953	0.1534	0.0038	0.8011	0.1525	0.0000	0.8006	0.1522	0.0000	0.8006	0.1522	0.0038
KDD1	QR	0.7913	0.1544	0.5000	0.7925	0.1541	0.5000	0.7938	0.1538	0.5000	0.7928	0.1540	0.5000
	PEP	0.7957	0.1533	0.1001	0.7992	0.1525	0.1003	0.7984	0.1527	0.1003	0.7957	0.1535	0.1003
	OptEmbed	0.7971*	0.1530*	0.6183	0.8021*	0.1519	0.4715	0.8027^{*}	0.1522	0.5105	0.8028*	0.1521	0.4154

Here * denotes statistically significant improvement (measured by a two-sided t-test with p-value < 0.05) over the best baseline.

On Criteo and Avazu, OptEmbed tends to save model parameters while keeping the performance. $_{18}$

Result

Table 2: Overall Performance Comparison.

	DeepFM			DCN			FNN			IPNN			
	Dataset	AUC	Logloss	Sparsity	AUC	Logloss	Sparsity	AUC	Logloss	Sparsity	AUC	Logloss	Sparsity
	Original	0.8104	0.4409	-	0.8106	0.4408	-	0.8110	0.4404	-	0.8113	0.4401	-
~	AutoDim	0.8093	0.4420	0.8642	0.8096	0.4418	0.7917	0.8104	0.4410	0.7187	0.8103	0.4411	0.7179
riteo	AutoField	0.8101	0.4412	0.0009	0.8108	0.4405	0.4108	0.8108	0.4406	0.6221	0.8111	0.4403	0.3941
Cri	QR	0.8084	0.4444	0.5000	0.8103	0.4411	0.5000	0.8105	0.4408	0.5000	0.8102	0.4411	0.5000
	PEP	0.7980	0.4541	0.5010	0.8110	0.4404	0.5802	0.8108	0.4406	0.5802	0.8111	0.4402	0.5607
	OptEmbed	0.8105	0.4409	0.9684	0.8113	0.4402	0.8534	0.8114	0.4400	0.6710	0.8114	0.4401	0.7122
	Original	0.7884	0.3751	-	0.7894	0.3748	-	0.7896	0.3748	-	0.7898	0.3745	-
-	AutoDim	0.7843	0.3779	0.6936	0.7893	0.3744	0.5013	0.7894	0.3743	0.5017	0.7894	0.3743	0.3892
Avazu	AutoField	0.7866	0.3762	0.0020	0.7887	0.3748	0.0001	0.7892	0.3748	0.0001	0.7897	0.3744	0.0001
Av	QR	0.7762	0.3821	0.5000	0.7868	0.3766	0.5000	0.7857	0.3769	0.5000	0.7849	0.3781	0.5000
	PEP	0.7877	0.3754	0.4126	0.7896	0.3743	0.3016	0.7894	0.3744	0.3016	0.7897	0.3742	0.3016
	OptEmbed	0.7888^{*}	0.3750^{*}	0.3927	0.7901^{*}	0.3740	0.6840	0.7902^{*}	0.3744	0.5563	0.7902	0.3740^{*}	0.4693
	Original	0.7962	0.1532	-	0.8010	0.1522	-	0.8008	0.1522	-	0.8007	0.1522	-
5	AutoDim	0.7886	0.1550	0.0029	0.8016	0.1520	0.1904	0.8012	0.1522	0.1669	0.8013	0.1521	0.2286
D1	AutoField	0.7953	0.1534	0.0038	0.8011	0.1525	0.0000	0.8006	0.1522	0.0000	0.8006	0.1522	0.0038
KDD1	QR	0.7913	0.1544	0.5000	0.7925	0.1541	0.5000	0.7938	0.1538	0.5000	0.7928	0.1540	0.5000
	PEP	0.7957	0.1533	0.1001	0.7992	0.1525	0.1003	0.7984	0.1527	0.1003	0.7957	0.1535	0.1003
	OptEmbed	0.7971^{*}	0.1530*	0.6183	0.8021*	0.1519	0.4715	0.8027*	0.1522	0.5105	0.8028*	0.1521	0.4154

Here * denotes statistically significant improvement (measured by a two-sided t-test with p-value < 0.05) over the best baseline.

On KDD12, OptEmbed tends to **boost model performance**.

Ablation

Table 3: Performance Comparison for Component Analysis.

	Basic	Metrics		Metrics	
	Model	Wietrics	AUC	Logloss	Sparsity
		Original	0.8104	0.4409	-
	DeenEM	OptEmbed-E	0.8104	0.4410	0.6267
•	DeepFM	OptEmbed-D	0.8103	0.4410	0.5547
Criteo		OptEmbed	0.8105	0.4409	0.9684
Ci		Original	0.8106	0.4408	17 10
	DCN	OptEmbed-E	0.8110	0.4404	0.6111
		OptEmbed-D	0.8110	0.4403	0.7192
		OptEmbed	0.8113	0.4402	0.8534
2		Original	0.7884	0.3751	1 1 31
		OptEmbed-E	0.7884	0.3752	0.0000
	DeepFM	OptEmbed-D	0.7888	0.3750	0.3927
Avazu		OptEmbed	0.7888	0.3750	0.3927
Av		Original	0.7894	0.3748	<u>-</u> 2
	DCN	OptEmbed-E	0.7895	0.3746	0.0024
	DUN	OptEmbed-D	0.7900	0.3740	0.5044
		OptEmbed	0.7900	0.3743	0.6840

OptEmbed-E: only using embedding mask OptEmbed-D: only using field-wise dimension mask

Table 4: Ablation About Re-training Stage.

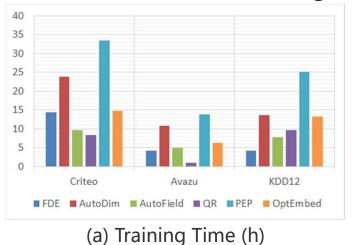
Dataset	Cri	teo	Av	azu	KD	D12
Retrain	w.	W.O.	w.	W.O.	W.	W.O.
AUC	0.8113	0.8110	0.7900	0.7895	0.8021	0.8005
Logloss	0.4402	0.4404	0.3743	0.3749	0.1523	0.1526

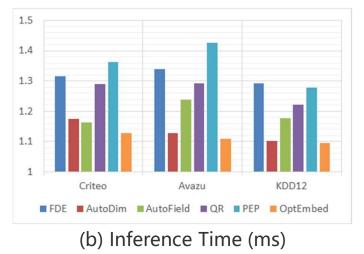
w. stands for with re-training. w.o. stands for without re-training.

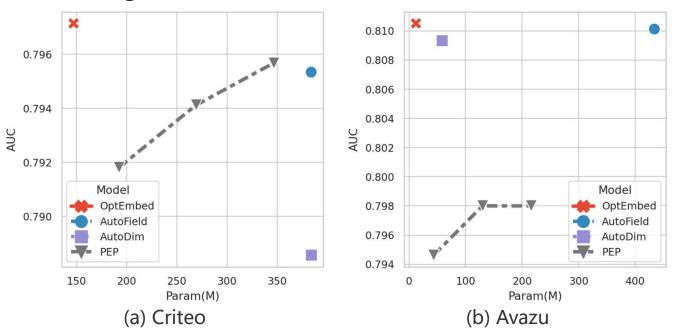
• Retraining is necessary.

- On Criteo, both components reduce the embedding parameters.
- On Avazu, OptEmbed-E makes no significant difference compared to original model.

Efficiency Analysis

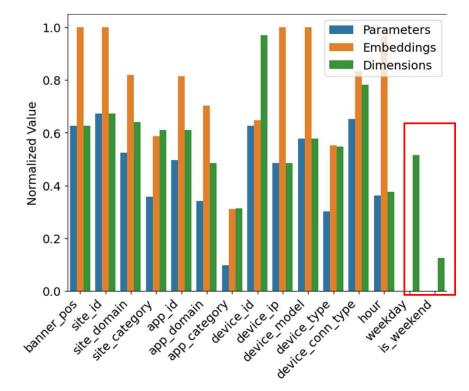






- OptEmbed tends to perform best in terms of Param-AUC tradeoff.
- OptEmbed ranks medium-level for training time and performs best for **inference time**.

Case Study



- Perform on Avazu dataset with DeepFM model.
- Filter out unnecessary fields completely introduced by **the common best practice**.

Conclusion

- We first propose three requirements for an **optimal embedding** table: No Redundant Feature, Embedding Dimension Flexible and Hardware Friendly.
- 2. Based on these requirements, **a novel, model-agnostic framework OptEmbed** is proposed, which optimizes the embedding table in a unifying way.
- 3. Extensive experiments demonstrate the superiority of OptEmbed in model performance, runtime efficiency and model size reduction.

Thanks for Listening!

- We first propose three requirements for an **optimal embedding** table: No Redundant Feature, Embedding Dimension Flexible and Hardware Friendly.
- 2. Based on these requirements, **a novel, model-agnostic framework OptEmbed** is proposed, which optimizes the embedding table in a unifying way.
- 3. Extensive experiments demonstrate the superiority of OptEmbed in model performance, runtime efficiency and model size reduction.

For code implementation, kindly check: <u>https://github.com/fuyuanlyu/OptEmbed</u>

