
OptEmbed: Learning Optimal Embedding
Table for Click-through Rate Prediction

Presenter: Fuyuan Lyu

Fuyuan Lyu1,2*, Xing Tang2*, Hong Zhu2, Huifeng Guo2, Yingxue Zhang3, Ruiming Tang2, Xue Liu1

1School of Computer Science, McGill University, Montreal, Canada
2Huawei Noah’s Ark Lab, Shenzhen, China

3Huawei Noah’s Ark Lab, Montreal, Canada

Background

0/1

2

One-hot, sparse Real-value, dense

Background

0/1

Is this optimal in terms of
performance and efficiency?

3

A 2d tensor ௙ ×஽

Feature size ଻

Embed Dim

4

The Definition of “Optimal”

A 2d tensor ௙ ×஽

Feature size ଻

Embed Dim

1. No Redundant Features in .

2. Embedding Dimension Flexible in .

3. Hardware Friendly

Redundant feature both consumes additional memory and is
detrimental to model performance [1].

[1] Wang, Yejing, et al. "Autofield: Automating feature selection in deep recommender systems." Proceedings of the ACM Web Conference 2022. 2022.
[2] Shi, Hao-Jun Michael, et al. "Compositional embeddings using complementary partitions for memory-efficient recommendation systems." Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2020.
[3] Zhao, Xiangyu, et al. "Autodim: Field-aware embedding dimension searchin recommender systems." Proceedings of the Web Conference 2021. 2021.
[4] Deng, Wei, et al. "DeepLight: Deep lightweight feature interactions for accelerating CTR predictions in ad serving." Proceedings of the 14th ACM international conference on Web search and data mining. 2021.
[5] Liu, Siyi, et al. "Learnable Embedding sizes for Recommender Systems." International Conference on Learning Representations. 2020.

Feature with small cardinality may induce overfitting, while
feature with large cardinality may induce underfitting [2,3].

Sparse embedding table requires extra storage and decoding
time, which is not suitable in practice [4,5].

5

No previous work satisfies all three requirements!

Comparison with Other Methods

6

CTR Prediction Formulation

𝑥 = 𝑥(ଵ), 𝑥(ଶ), … , 𝑥(௡)

For n field one-hot encoded raw input:

Transform into dense vector:
𝑒(௜) = 𝐸 × 𝑥 ௜

𝑒 = 𝑒(ଵ), 𝑒(ଶ), … , 𝑒(௡) = 𝐸 × 𝑥

Fed into feature interaction and
classification layer:

Adopt the cross-entropy loss:
Formulate the CTR prediction problem:

Concatenate all embeddings:

illustration figure for common CTR model

7

Goal A

8

Optimal Embedding Table
Decompose the original single
embedding table into a series of
field-wise embedding table:

𝐸 = 𝐸 ଵ , 𝐸 ଶ , … , 𝐸 ௡ , 𝐸(௜) ∈ R|୤(౟)|×஽(೔)

For R1: No Redundant Features:

෍ |𝑓(௜)|

௡

௜ୀଵ

≤ |𝑓|

R2: Embedding Dimension Flexible: Re-formulate the CTR prediction problem: Goal B

R3: Hardware Friendly is naturally
satisfied.

Choose different (௜)

9

Optimal Embedding Table
Decompose the original single
embedding table into a series of
field-wise embedding table:

𝐸 = 𝐸 ଵ , 𝐸 ଶ , … , 𝐸 ௡ , 𝐸(௜) ∈ R|୤(౟)|×஽(೔)

For R1: No Redundant Features:

෍ |𝑓(௜)|

௡

௜ୀଵ

≤ |𝑓|

Re-formulate the CTR prediction problem: Goal B

Hard to directly optimize!

R2: Embedding Dimension Flexible:

Choose different (௜)

R3: Hardware Friendly are naturally
satisfied.

10

Optimal Embedding Table

Hard to directly optimize!

(௜) is influenced by (௜)

If optimize (௜) & (௜) alternately

Sub-optimal result

11

Optimal Embedding Table

Hard to directly optimize!

(௜) is influenced by (௜)

If optimize (௜) & (௜) alternately If optimize (௜) & (௜) uniformly

Sub-optimal result

Sparse embedding

Hardware Unfriendly

12

Optimal Embedding Table

Goal B

13

Optimal Embedding Table

How?

Goal B Goal A

14

OptEmbed

15

OptEmbed

Goal B Goal C

OptEmbed
In practice, we introduce two masks:

𝑚ௗ ∈ 0,1 ஽×௡

Field-wise dimension mask:

Embedding mask:

𝑚௘ ∈ 0,1 |௙|

16

Three phases:
1. Redundant Embedding Pruning
2. Embedding Dimension Search
3. Parameter Re-training

Goal C

Experiment

Backbone Models:
DeepFM[1], DCN[2], FNN[3], IPNN[4]

Baseline Methods:
AutoDim[5], AutoField[6], QR[7], PEP[8]

Evaluation Metrics:
AUC, Logloss and Sparsity

[1] Guo, Huifeng, et al. "DeepFM: a factorization-machine based neural network for CTR prediction." Proceedings of the 26th International Joint Conference on Artificial Intelligence. 2017.
[2] Wang, Ruoxi, et al. "Deep & cross network for ad click predictions." Proceedings of the ADKDD'17. 2017. 1-7.
[3] Zhang, Weinan, Tianming Du, and Jun Wang. "Deep learning over multi-field categorical data." European conference on information retrieval. Springer, Cham, 2016.
[4] Qu, Yanru, et al. "Product-based neural networks for user response prediction." 2016 IEEE 16th International Conference on Data Mining (ICDM). IEEE, 2016.
[5] Zhao, Xiangyu, et al. "Autodim: Field-aware embedding dimension searchin recommender systems." Proceedings of the Web Conference 2021. 2021.
[6] Wang, Yejing, et al. "Autofield: Automating feature selection in deep recommender systems." Proceedings of the ACM Web Conference 2022. 2022.
[7] Shi, Hao-Jun Michael, et al. "Compositional embeddings using complementary partitions for memory-efficient recommendation systems." Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2020.
[8] Liu, Siyi, et al. "Learnable Embedding sizes for Recommender Systems." International Conference on Learning Representations. 2020.

17

Result

On Criteo and Avazu, OptEmbed tends to save model parameters while keeping the performance.
18

Result

On KDD12, OptEmbed tends to boost model performance.
19

Ablation

• Retraining is necessary.

• On Criteo, both components reduce the
embedding parameters.

• On Avazu, OptEmbed-E makes no
significant difference compared to
original model.

OptEmbed-E: only using embedding mask
OptEmbed-D: only using field-wise dimension mask

20

Efficiency Analysis

(a) Training Time (h)

(b) Inference Time (ms)

(a) Criteo (b) Avazu

• OptEmbed tends to perform best in terms of Param-
AUC tradeoff.

• OptEmbed ranks medium-level for training time and
performs best for inference time.

21

Case Study

• Perform on Avazu dataset with DeepFM model.
• Filter out unnecessary fields completely introduced

by the common best practice.
22

Conclusion

1. We first propose three requirements for an optimal embedding
table: No Redundant Feature, Embedding Dimension Flexible and
Hardware Friendly.

2. Based on these requirements, a novel, model-agnostic framework
OptEmbed is proposed, which optimizes the embedding table in a
unifying way.

3. Extensive experiments demonstrate the superiority of OptEmbed in
model performance, runtime efficiency and model size reduction.

23

For code implementation, kindly check:
https://github.com/fuyuanlyu/OptEmbed

Thanks for Listening!

1. We first propose three requirements for an optimal embedding
table: No Redundant Feature, Embedding Dimension Flexible and
Hardware Friendly.

2. Based on these requirements, a novel, model-agnostic framework
OptEmbed is proposed, which optimizes the embedding table in a
unifying way.

3. Extensive experiments demonstrate the superiority of OptEmbed in
model performance, runtime efficiency and model size reduction.

24

