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Background
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Is this optimal in terms of 
performance and efficiency? 
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A 2d tensor ×

Feature size 
Embed Dim 
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The Definition of “Optimal”

A 2d tensor ×

Feature size 
Embed Dim 

1. No Redundant Features in .

2. Embedding Dimension Flexible in .

3. Hardware Friendly

Redundant feature both consumes additional memory and is 
detrimental to model performance [1].

[1] Wang, Yejing, et al. "Autofield: Automating feature selection in deep recommender systems." Proceedings of the ACM Web Conference 2022. 2022.
[2] Shi, Hao-Jun Michael, et al. "Compositional embeddings using complementary partitions for memory-efficient recommendation systems." Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2020.
[3] Zhao, Xiangyu, et al. "Autodim: Field-aware embedding dimension searchin recommender systems." Proceedings of the Web Conference 2021. 2021.
[4] Deng, Wei, et al. "DeepLight: Deep lightweight feature interactions for accelerating CTR predictions in ad serving." Proceedings of the 14th ACM international conference on Web search and data mining. 2021.
[5] Liu, Siyi, et al. "Learnable Embedding sizes for Recommender Systems." International Conference on Learning Representations. 2020.

Feature with small cardinality may induce overfitting, while 
feature with large cardinality may induce underfitting [2,3].

Sparse embedding table requires extra storage and decoding 
time, which is not suitable in practice [4,5].
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No previous work satisfies all three requirements!

Comparison with Other Methods
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CTR Prediction Formulation

𝑥 = 𝑥( ), 𝑥( ), … , 𝑥( )

For n field one-hot encoded raw input:

Transform into dense vector:
𝑒( ) = 𝐸 × 𝑥

𝑒 = 𝑒( ), 𝑒( ), … , 𝑒( )  = 𝐸 × 𝑥

Fed into feature interaction and 
classification layer:

Adopt the cross-entropy loss:
Formulate the CTR prediction problem:

Concatenate all embeddings:

illustration figure for common CTR model
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Goal A
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Optimal Embedding Table
Decompose the original single 
embedding table into a series of 
field-wise embedding table:

𝐸 = 𝐸 , 𝐸 , … , 𝐸 , 𝐸( ) ∈ R| ( )|× ( )

For R1: No Redundant Features:

|𝑓( )| ≤ |𝑓|

R2: Embedding Dimension Flexible: Re-formulate the CTR prediction problem: Goal B

R3: Hardware Friendly is naturally 
satisfied.

Choose different ( )
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Optimal Embedding Table
Decompose the original single 
embedding table into a series of 
field-wise embedding table:

𝐸 = 𝐸 , 𝐸 , … , 𝐸 , 𝐸( ) ∈ R| ( )|× ( )

For R1: No Redundant Features:

|𝑓( )| ≤ |𝑓|

Re-formulate the CTR prediction problem: Goal B

Hard to directly optimize!

R2: Embedding Dimension Flexible:

Choose different ( )

R3: Hardware Friendly are naturally 
satisfied.
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Optimal Embedding Table

Hard to directly optimize!

( ) is influenced by ( )

If optimize ( ) & ( ) alternately 

Sub-optimal result
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Optimal Embedding Table

Hard to directly optimize!

( ) is influenced by ( )

If optimize ( ) & ( ) alternately If optimize ( ) & ( ) uniformly 

Sub-optimal result

Sparse embedding

Hardware Unfriendly
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Optimal Embedding Table

Goal B
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Optimal Embedding Table

How?

Goal B Goal A
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OptEmbed
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OptEmbed

Goal B Goal C



OptEmbed
In practice, we introduce two masks:

𝑚 ∈ 0,1 ×

Field-wise dimension mask:

Embedding mask:

𝑚 ∈ 0,1 | |
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Three phases:
1. Redundant Embedding Pruning
2. Embedding Dimension Search
3. Parameter Re-training

Goal C



Experiment

Backbone Models:
DeepFM[1], DCN[2], FNN[3], IPNN[4]

Baseline Methods:
AutoDim[5], AutoField[6], QR[7], PEP[8]

Evaluation Metrics:
AUC, Logloss and Sparsity

[1] Guo, Huifeng, et al. "DeepFM: a factorization-machine based neural network for CTR prediction." Proceedings of the 26th International Joint Conference on Artificial Intelligence. 2017.
[2] Wang, Ruoxi, et al. "Deep & cross network for ad click predictions." Proceedings of the ADKDD'17. 2017. 1-7.
[3] Zhang, Weinan, Tianming Du, and Jun Wang. "Deep learning over multi-field categorical data." European conference on information retrieval. Springer, Cham, 2016.
[4] Qu, Yanru, et al. "Product-based neural networks for user response prediction." 2016 IEEE 16th International Conference on Data Mining (ICDM). IEEE, 2016.
[5] Zhao, Xiangyu, et al. "Autodim: Field-aware embedding dimension searchin recommender systems." Proceedings of the Web Conference 2021. 2021.
[6] Wang, Yejing, et al. "Autofield: Automating feature selection in deep recommender systems." Proceedings of the ACM Web Conference 2022. 2022.
[7] Shi, Hao-Jun Michael, et al. "Compositional embeddings using complementary partitions for memory-efficient recommendation systems." Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2020.
[8] Liu, Siyi, et al. "Learnable Embedding sizes for Recommender Systems." International Conference on Learning Representations. 2020.
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Result

On Criteo and Avazu, OptEmbed tends to save model parameters while keeping the performance.
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Result

On KDD12, OptEmbed tends to boost model performance.
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Ablation

• Retraining is necessary.

• On Criteo, both components reduce the 
embedding parameters.

• On Avazu, OptEmbed-E makes no 
significant difference compared to 
original model. 

OptEmbed-E: only using embedding mask
OptEmbed-D: only using field-wise dimension mask
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Efficiency Analysis

(a) Training Time (h)

(b) Inference Time (ms)

(a) Criteo (b) Avazu

• OptEmbed tends to perform best in terms of Param-
AUC tradeoff.

• OptEmbed ranks medium-level for training time and 
performs best for inference time.
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Case Study

• Perform on Avazu dataset with DeepFM model. 
• Filter out unnecessary fields completely introduced 

by the common best practice.
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Conclusion

1. We first propose three requirements for an optimal embedding 
table: No Redundant Feature, Embedding Dimension Flexible and 
Hardware Friendly.

2. Based on these requirements, a novel, model-agnostic framework 
OptEmbed is proposed, which optimizes the embedding table in a 
unifying way.

3. Extensive experiments demonstrate the superiority of OptEmbed in 
model performance, runtime efficiency and model size reduction.
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For code implementation, kindly check: 
https://github.com/fuyuanlyu/OptEmbed

Thanks for Listening!

1. We first propose three requirements for an optimal embedding 
table: No Redundant Feature, Embedding Dimension Flexible and 
Hardware Friendly.

2. Based on these requirements, a novel, model-agnostic framework 
OptEmbed is proposed, which optimizes the embedding table in a 
unifying way.

3. Extensive experiments demonstrate the superiority of OptEmbed in 
model performance, runtime efficiency and model size reduction.
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