

Memorize, Factorize, or be Naïve: Learning Optimal Feature Interaction Methods for CTR Prediction

Fuyuan Lyu^{1,2*}, Xing Tang^{2*}, Huifeng Guo², Ruiming Tang², Xiuqiang He², Rui Zhang³ and Xue Liu¹

¹School of Computer Science, McGill University, Montreal, Canada, ²Huawei Noah's Ark Lab, ³www.ruizhang.info

Presenter: Fuyuan Lyu

Outline

- Background
- Method
- Result
- Discussion
- Conclusion

CTR prediction

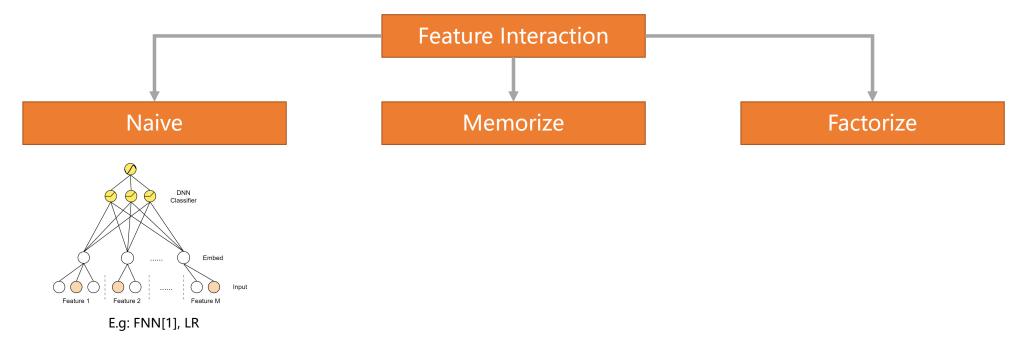
Features as input

Feature Interaction

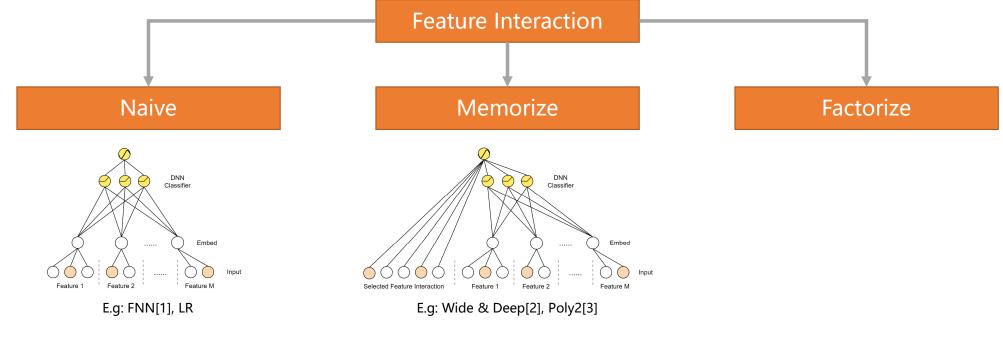
 Click-through rate(CTR) prediction can be viewed as a binary classification problem given different features as input[1-4]

- Feature interaction is the most important question in CTR modeling [1-4]
- Modeling feature interaction correctly can significantly improve performance

Cheng, Heng-Tze, et al. "Wide & deep learning for recommender systems." Proceedings of the 1st workshop on deep learning for recommender systems. 2016.
 Guo, Huifeng, et al. "DeepFM: a factorization-machine based neural network for CTR prediction." arXiv preprint arXiv:1703.04247 (2017).
 Qu, Yanru, et al. "Product-based neural networks for user response prediction." 2016 IEEE 16th International Conference on Data Mining (ICDM). IEEE, 2016.
 Zhang, Weinan, Tianming Du, and Jun Wang. "Deep learning over multi-field categorical data." European conference on information retrieval. Springer, Cham, 2016.

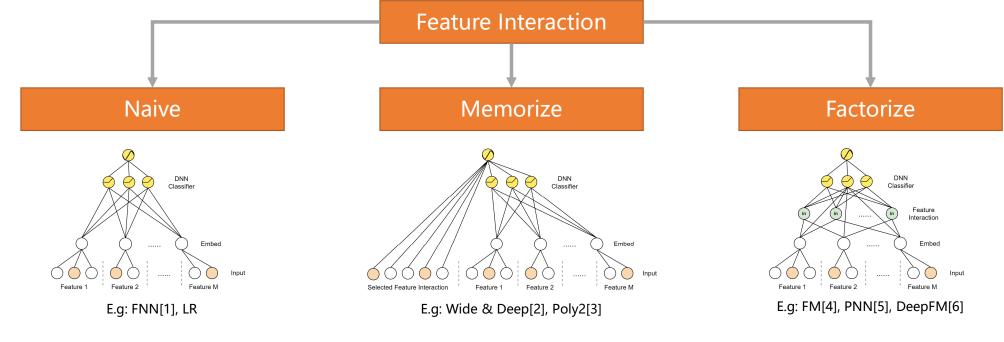


- Does not explicitly model feature interaction
- Rely on the capability of DNN to model feature interaction



- Does not explicitly model feature interaction
- Rely on the capability of DNN to model feature interaction
- Use cross-product transformation to memorize part or all feature interaction

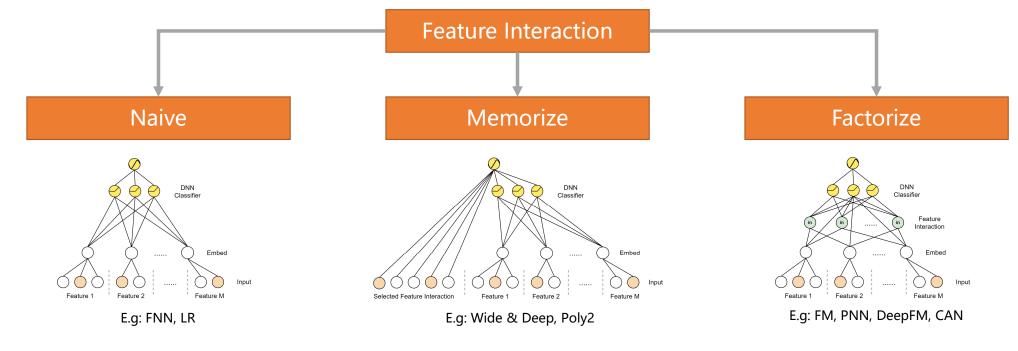
[1] Zhang, Weinan, Tianming Du, and Jun Wang. "Deep learning over multi-field categorical data." European conference on information retrieval. Springer, Cham, 2016.
[2] Cheng, Heng-Tze, et al. "Wide & deep learning for recommender systems." Proceedings of the 1st workshop on deep learning for recommender systems 2016.
[3] Chang, 'In-Wen, et al. "Training and testing low-degree polynomial data mappings via linear SVM." Journal of Machine Learning for search 11.4 (2010).



- Does not explicitly model feature interaction
- Rely on the capability of DNN to model feature interaction
- Use cross-product transformation to memorize part or all feature interaction
- Learn latent vector of original features to model feature interaction implicitly

Zhang, Weinan, Tianming Du, and Jun Wang. "Deep learning over multi-field categorical data." *European conference on information retrieval*. Springer, Cham, 2016.
 Cheng, Heng-Tze, et al. "Wide & deep learning for recommender systems." *Proceedings of the 1st workshop on deep learning for recommender systems*. 2016.
 Chang, Yin-Wen, et al. "Training and testing low-degree polynomial data mappings via linear SVM." *Journal of Machine Learning Research* 11.4 (2010).
 Rendle, Steffen. "Factorization machines." 2010 IEEE International conference on data mining. IEEE, 2010.

[5] Qu, Yanru, et al. "Product-based neural networks for user response prediction." 2016 IEEE 16th International Conference on Data Mining (ICDM). IEEE, 2016. [6] Guo, Huifeng, et al. "DeepFM: a factorization-machine based neural network for CTR prediction." arXiv preprint arXiv:1703.04247 (2017).



- Does not explicitly model feature interaction
- Rely on the capability of DNN to model feature interaction

Limited model capability

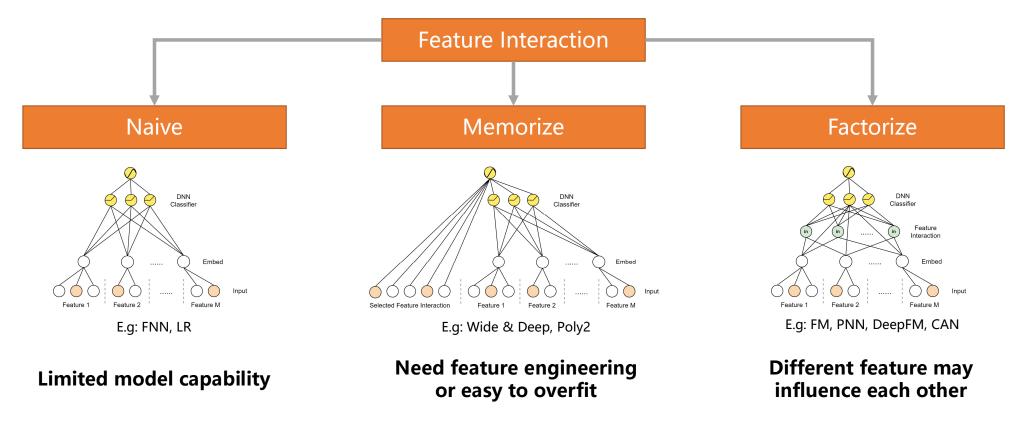
Use cross-product transformation to memorize part or all feature interaction

Need feature engineering or easy to overfit

 Learn latent vector of original features to model feature interaction implicitly

Different feature may influence each other

OptInter: searching for optimal feature interaction methods

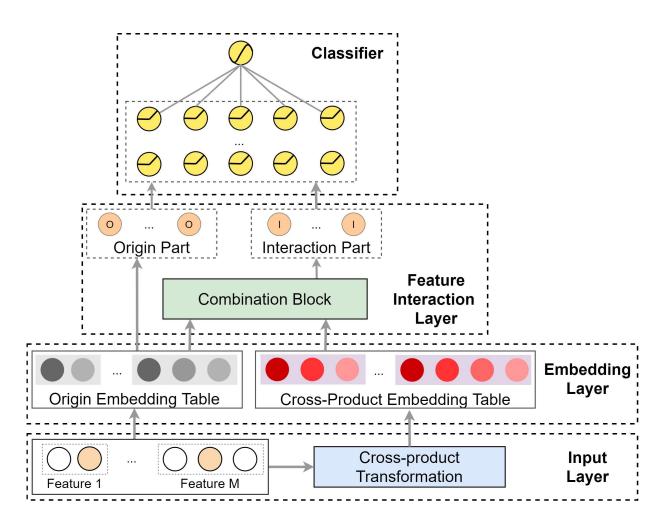


Different methods perform differently on various dataset

A data-driven approach to search for optimal feature interaction methods

Only consider 2-nd order because:

- 1. Empirical experience shows that 2-nd order is good enough for most cases[1-4]
- Combination explosion for 2. higher-order



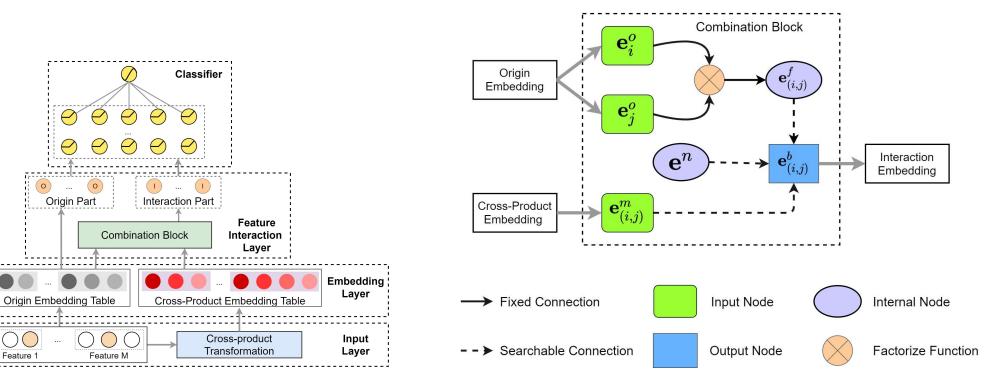
[1] Chang, Yin-Wen, et al. "Training and testing low-degree polynomial data mappings via linear SVM." Journal of Machine Learning Research 11.4 (2010). [2] Rendle, Steffen. "Factorization machines." 2010 IEEE International conference on data mining. IEEE, 2010.

[3] Qu, Yanru, et al. "Product-based neural networks for user response prediction." 2016 IEEE 16th International Conference on Data Mining (ICDM). IEEE, 2016.

[4] Guo, Huifeng, et al. "DeepFM: a factorization-machine based neural network for CTR prediction." arXiv preprint arXiv:1703.04247 (2017).

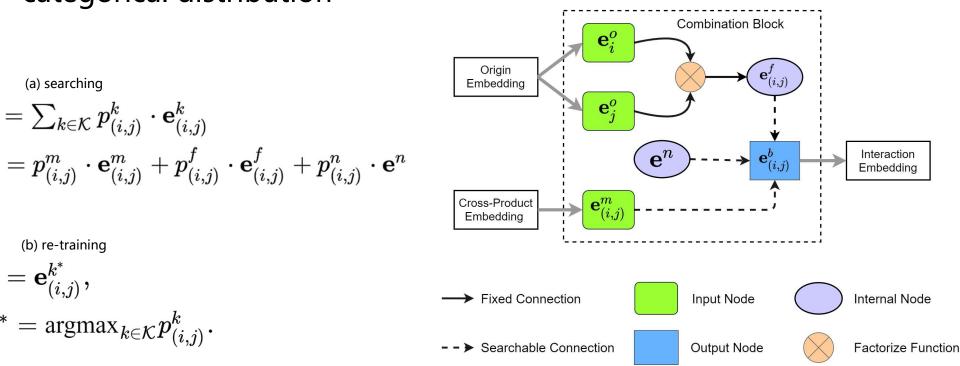
A data-driven approach to search for optimal feature interaction methods

Relax to discrete optimization to continuous optimization



Using Gumbel-softmax[1] trick to approximate categorical distribution

Relax to discrete optimization to continuous optimization



(b) re-training

(a) searching

 $\mathbf{e}^b_{(i,j)} = \sum_{k \in \mathcal{K}} p^k_{(i,j)} \cdot \mathbf{e}^k_{(i,j)}$

$$egin{aligned} \mathbf{e}^b_{(i,j)} &= \mathbf{e}^{k^*}_{(i,j)}, \ ext{s.t.} \ k^* &= ext{argmax}_{k \in \mathcal{K}} p^k_{(i,j)}. \end{aligned}$$

[1] Jang, Eric, Shixiang Gu, and Ben Poole. "Categorical reparameterization with gumbel-softmax." arXiv preprint arXiv:1611.01144 (2016).

OptInter as a framework

Category	Model	Feature In Method	teraction Layer Func.	Classifier	
naïve	LR [24] FNN [5]	$ \begin{cases} n \\ n \end{cases} $	-	Shallow Deep	
memorized	Poly2 [8] Wide&Deep [1]	${m} \\ {m}$	-	Shallow S&D	
factorized	FM [9] FwFM [11] FmFM [12] IPNN [3] OPNN [3] DeepFM [2] PIN [4]	$\{f\}$ $\{f\}$ $\{f\}$ $\{f\}$ $\{f\}$ $\{f\}$ $\{f\}$	$\begin{array}{ } \langle \mathbf{e}^o_i, \mathbf{e}^o_j \rangle \\ \langle \mathbf{e}^o_i, \mathbf{e}^o_j \rangle w_{(i,j)} \\ \mathbf{e}^o_i W_{(i,j)} \mathbf{e}^{oT}_j \\ \langle \mathbf{e}^o_i, \mathbf{e}^o_j \rangle \\ \langle \mathbf{e}^o_i, \mathbf{e}^o_j \rangle_\phi \\ \langle \mathbf{e}^o_i, \mathbf{e}^o_j \rangle_\phi \\ \langle \mathbf{e}^o_i, \mathbf{e}^o_j \rangle \\ \mathrm{net}(\mathbf{e}^o_i, \mathbf{e}^o_j) \end{array}$	Shallow Shallow Deep Deep Deep Deep	f: factorize m: memorize n: naive
hybrid	AutoFIS [15] OptInter	$ \begin{array}{c} \{n,f\} \\ \{n,m,f\} \end{array} $	flexible flexible	Deep Deep	

	Dataset	#samples	#cont	#cate	#cross	#orig value	#cross value	pos ratio
Result	Criteo	$4.6 imes 10^7$	13	26	325	5.1×10^{5}	$3.7 imes 10^7$	0.23
IVEZUIT	Avazu	$4.0 imes 10^7$	0	24	276	$1.2 imes 10^6$	2.4×10^{8}	0.17
	iPinYou	$1.9 imes 10^7$	0	16	120	9.4×10^5	$6.8 imes10^7$	0.0008
	Private	8.0×10^{8}	0	9	36	$4.0 imes 10^5$	$7.1 imes 10^7$	0.17

Dataset		Criteo	8	R I	Avazu		1	iPinYou			Private	
Metric	AUC	Log loss	Param.	AUC	Log loss	Param.	AUC	Log loss	Param.	AUC	log Loss	Param.
LR	0.7785	0.4708	0.5M	0.7685	0.3862	1.2M	0.7565	0.005685	0.9M	0.7690	0.3836	0.4M
FNN	0.7996	0.4512	13M	0.7858	0.3761	51M	0.7779	0.005627	19M	0.8348	0.3353	32M
FM	0.7845	0.4681	10M	0.7826	0.3790	49M	0.7779	0.005574	19M	0.8304	0.3406	32M
IPNN	0.8005	0.4504	13M	0.7887	0.3745	51M	0.7786	0.005644	19M	0.8410	0.3303	32M
DeepFM	0.7997	0.4512	13M	0.7860	0.3760	51M	0.7789	0.005636	19M	0.8383	0.3325	32M
PIN	0.8016	0.4508	17M	0.7825	0.3789	52M	0.7779	0.005574	20M	0.8331	0.3365	33M
OptInter-F	0.8003	0.4507	21M	0.7860	0.3761	56M	0.7762	0.005688	23M	0.8380	0.3325	37M
Poly2	0.7827	0.4751	22M	0.7860	0.3795	241M	0.7743	0.005578	69M	0.8307	0.3390	71M
OptInter-M	0.8094	0.4423	225M	0.8061	0.3638	1012M	0.7800	0.005640	296M	0.8415	0.3265	738M
AutoFIS	0.8014	0.4514	22M	0.7861	0.3758	51M	0.7792	0.005620	19M	0.8413	0.3299	32M
OptInter	0.8101*	0.4417*	100M	0.8062*	0.3637*	827M	0.7825*	0.005606*	26M	0.8425*	0.3256*	302M

- Memorize is very effective
 OptInter can automatically select optimal modeling methods for each feature interaction on different datasets

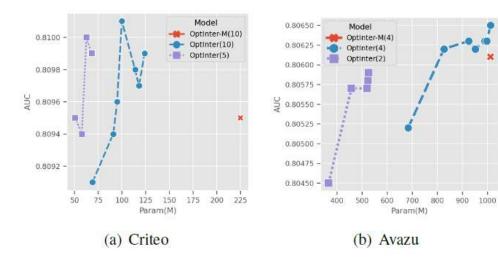
Result

Dataset	Dataset Criteo						Avazu			
Model	FM	FNN	IPNN	DeepFM	OptInter	FNN	FM	IPNN	DeepFM	OptInter
AUC	0.7543	0.7990	0.8014	0.7678	0.8101*	0.7677	0.7848	0.7923	0.7691	0.8062*
log loss	0.5192	0.4516	0.4495	0.5075	0.4417*	0.3947	0.3768	0.3723	0.3934	0.3637*
Orig.E.	200	200	200	200	20	700	700	700	700	40
Cross.E.	0	0	0	0	10	0	0	0	0	4
Param.	103M	109M	109M	109M	100M	860M	953M	954M	953M	827M

Orig. E. : Original embedding length Cross. E. : Cross-product embedding length

- The increase of param size does not necessary leads to the increase of model performance
- OptInter can better utilize params than other SOTA methods

Result



- Performance degrades dramatically when the model shrink below certain threshold
- Reducing embedding size is more effective when resource is constrained

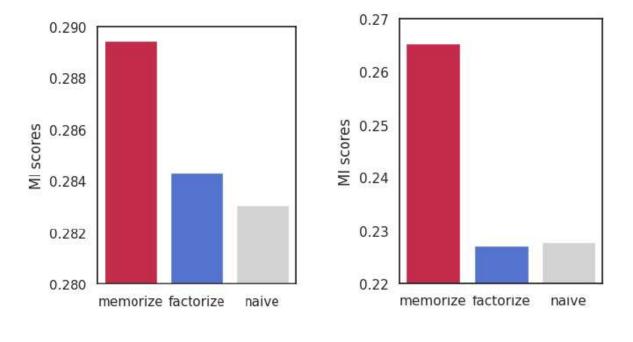
Dataset	Model	AUC	log loss	Arch	Param				
8	Random	0.8089	0.3764	<u>20</u>	84M				
Criteo	Bi-level	0.8099	0.3741	[114,109,104]	95M				
	OptInter	0.8101	0.3760	[117,98,110]	100M				
8	Random	0.8030	0.3658	-	418M				
Avazu	Bi-level	Out of Memory							
	OptInter	0.8062	0.3637	[107,73,96]	827M				
5	Random	0.7781	0.005734	[36,38,46]	108M				
iPinYou	Bi -level	0.7796	0.005620	[34,16,70]	31M				
	OptInter	0.7825	0.005606	[25,12,83]	26M				

• Our search algorithm is better than bi-level optimization

Dataset	Cri	iteo	Avazu		
Metric	W.	W.O.	W.	W.O.	
AUC	0.8101	0.7953	0.8062	0.7772	
log loss	0.3760	0.4558	0.3637	0.3829	

• Retraining is necessary

Discussion

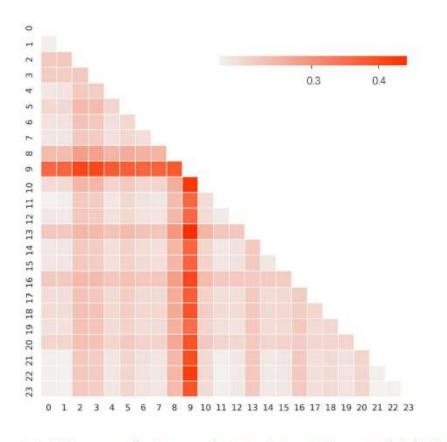


(a) Criteo

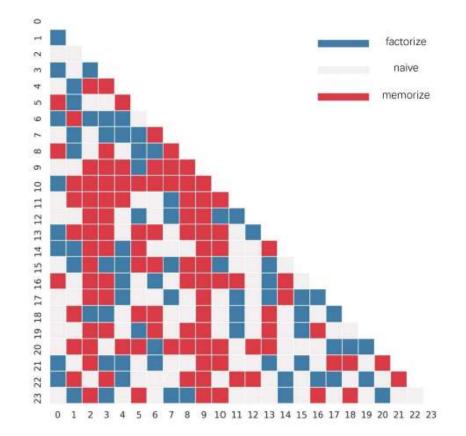
(b) Avazu

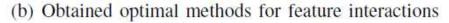
- memorize feature interaction with **rich** information
- ignore feature interaction with **poor** information
- factorize different feature interaction given dataset

Discussion-Avazu Case Study



(a) MI scores between feature interactions and labels





Conclusion

- 1. A data-driven framework OptInter including naïve, memorize, factorize feature interaction methods
- 2. A two-stage learning algorithm to select optimal modeling method for each feature interaction
- 3. Conduct comprehensive experiments on 3 public and 1 private datasets to demonstrate effectiveness and provide interpretability

Thanks for listening!