

Towards Hybrid-grained Feature Interaction Selection for Deep Sparse Network

Fuyuan Lyu¹, Xing Tang^{2*}, Dugang Liu⁴, Chen Ma³, Weihong Luo², Liang Chen², Xiuqiang He², Xue Liu¹

^{*}Corresponding Author ¹School of Computer Science, McGill University ²FiT, Tencent; ³City University of Hong Kong ⁴Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ)

Presenter: Fuyuan Lyu

DSN framework

Deep Sparse Network: handle sparse (usually one-hot), highdimensional features.

E.g. City, Season, Gender

DSN framework

Deep Sparse Network: handle sparse (usually one-hot), highdimensional features.

An example for feature interaction: <City, Season>

Feature Interaction Layer plays an important role in DSN framework

Feature Interaction Layer

Deep Sparse Network: handle sparse (usually one-hot), highdimensional features.

An example for feature interaction: <City, Season>

Feature Interaction Layer plays an important role in DSN framework

Consider yourself a sport advertiser

Montreal

Skiing!

Consider yourself a sport advertiser

Montreal

Skiing!

Strong indicator. Good!

Consider yourself a sport advertiser

Montreal

Winter

Skiing!

Strong indicator. Good!

Shanghai

Winter

Basketball?

Consider yourself a sport advertiser

Montreal

Winter

Skiing!

Strong indicator. Good!

Shanghai

Winter

Swimming?

Consider yourself a sport advertiser

Montreal

Winter

Skiing!

Strong indicator. Good!

Shanghai

Winter

Ping Pong?

Consider yourself a sport advertiser

Shanghai

Winter

Ping Pong?

Perhaps not much info

Consider yourself a sport advertiser

Need a more fine-grained selection

Dimension Explosion

For online advertisement systems #Field $n \le 100$ #Value $m \approx 10^7$

Dimension Explosion

For online advertisement systems

#Field $n \leq 100$

#Value $m \approx 10^7$

A is symmetrical.

Selection Tensor Decomposition

Dimension Explosion

For online advertisement systems #Field $n \le 100$ #Value $m \approx 10^7$

$$A^t = \alpha A_f^t + (1 - \alpha) A_v^t$$

$$\begin{split} & A_f^t \text{ is the field-level selection} \\ & A_v^t \text{ is the value-level selection} \\ & \alpha \in \{0,1\}^{\{C_n^t\}} \text{ is the hybrid tensor} \end{split}$$

Hybrid-grained Selection

Selection Tensor Decomposition

Dimension Explosion

For online advertisement systems #Field $n \leq 100$

#Value $m \approx 10^7$

$$A^t = \alpha A_f^t + (1 - \alpha) A_v^t$$

$$\begin{split} & A_f^t \text{ is the field-level selection} \\ & A_v^t \text{ is the value-level selection} \\ & \alpha \in \{0,1\}^{\{C_n^t\}} \text{ is the hybrid tensor} \end{split}$$

Hybrid-grained Selection

End-to-end selection

Selection results are discrete

Selection Tensor Decomposition

Dimension Explosion

For online advertisement systems #Field $n \leq 100$

#Value $m \approx 10^7$

Selection Tensor Decomposition

$$A^t = \alpha A_f^t + (1 - \alpha) A_v^t$$

$$\begin{split} &A_f^t \text{ is the field-level selection} \\ &A_v^t \text{ is the value-level selection} \\ &\alpha \in \{0,1\}^{\{C_n^t\}} \text{ is the hybrid tensor} \end{split}$$

Hybrid-grained Selection

End-to-end selection

Selection results are discrete

$$\mathbf{S}(x) = \mathbf{1}_{x>0}, \qquad \frac{dS}{dx} = 1$$

Sparsification-based Selection Alg.

Result

Dataset		Criteo		Avazu		KDD12	
Category	Model	AUC	Logloss	AUC	Logloss	AUC	Logloss
Shallow	LR	0.7882	0.4609	0.7563	0.3928	0.7411	0.1637
	FM	0.8047	0.4464	0.7839	0.3783	0.7786	0.1566
DSNs	FNN	0.8101	0.4414	0.7891	0.3762	0.7947	0.1536
	DeepFM	0.8097	0.4418	0.7896	0.3757	<u>0.7969</u>	<u>0.1531</u>
	DCN	0.8096	0.4419	0.7887	0.3767	0.7955	0.1534
	IPNN	0.8103	0.4413	0.7896	0.3741	0.7945	0.1537
DSNs with FIS	AutoFIS	0.8089	0.4428	0.7903	0.3749	0.7959	0.1533
	PROFIT	<u>0.8112</u>	<u>0.4406</u>	<u>0.7906</u>	<u>0.3756</u>	0.7964	0.1533
	OptFeature	0.8116	0.4402	0.7925*	0.3741*	0.7982*	0.1529*

Table 1: Overall Performance Comparison

Here * denotes statistically significant improvement (measured by a two-sided t-test with p-value < 0.05) over the best baseline. The best and second best performed results are marked in **bold** and <u>underline</u> format

On All datasets, OptFeature ranks the first On Avazu and KDD12, OptFeature achieve significant improvement

Result

OptFeature is both efficient and effective

Summary and Limitations

Summary:

- 1. Granularity: field -> value -> hybrid.
- 2. OptFeature:
 - 1. Selection Tensor Decomposition
 - 2. Hybrid-grained Selection
 - 3. Sparsification-based Selection Algorithm
- 3. Superior in efficiency and effectiveness.

Summary and Limitations

Summary:

- 1. Granularity: field -> value -> hybrid.
- 2. OptFeature:
 - 1. Selection Tensor Decomposition
 - 2. Hybrid-grained Selection
 - 3. Sparsification-based Selection Algorithm
- 3. Superior in efficiency and effectiveness.

Limitations:

- 1. Lack online evaluation
- 2. Feature Selection is excluded
- 3. Single metric-driven

Thanks for Listening!

Summary:

- 1. Granularity: field -> value -> hybrid.
- 2. OptFeature:
 - 1. Selection Tensor Decomposition
 - 2. Hybrid-grained Selection
 - 3. Sparsification-based Selection Algorithm
- 3. Superior in efficiency and effectiveness.

