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Result

Table 1: Overall Performance Comparison

Dataset Criteo Avazu KDDI12
Category Model AUC  Logloss AUC Logloss AUC Logloss
Shallow LR 0.7882  0.4609 | 0.7563  0.3928 | 0.7411 0.1637

FM 0.8047 0.4464 | 0.7839  0.3783 | 0.7786  0.1566

FNN 0.8101 0.4414 | 0.7891 0.3762 | 0.7947  0.1536

DSNs DeepFM | 0.8097 0.4418 | 0.7896  0.3757 | 0.7969  0.1531
DCN 0.8096 0.4419 | 0.7887  0.3767 | 0.7955  0.1534

IPNN 0.8103 04413 | 0.7896  0.3741 | 0.7945  0.1537

AutoFIS 0.8089 0.4428 | 0.7903  0.3749 | 0.7959  0.1533

DSNs with FIS PROFIT | 0.8112 0.4406 | 0.7906  0.3756 | 0.7964  0.1533
OptFeature | 0.8116  0.4402 | 0.7925* 0.3741% | 0.7982* 0.1529"

Here * denotes statistically significant improvement (measured by a two-sided t-test with p-value < 0.05)
over the best baseline. The best and second best performed results are marked in bold and underline format

On All datasets, OptFeature ranks the first
On Avazu and KDD12, OptFeature achieve significant improvement
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Summary and Limitations

Summary:
1. Granularity: field -> value -> hybrid.
2. OptFeature:
1. Selection Tensor Decomposition
2. Hybrid-grained Selection
3. Sparsification-based Selection Algorithm
3. Superior in efficiency and effectiveness.
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Summary:
1. Granularity: field -> value -> hybrid.
2. OptFeature:
1. Selection Tensor Decomposition
2. Hybrid-grained Selection
3. Sparsification-based Selection Algorithm
3. Superior in efficiency and effectiveness.

Limitations:

1. Lack online evaluation

2. Feature Selection is excluded
3. Single metric-driven



Thanks for Listening!

Summary:
1. Granularity: field -> value -> hybrid.
2. OptFeature:
1. Selection Tensor Decomposition
2. Hybrid-grained Selection
3. Sparsification-based Selection Algorithm
3. Superior in efficiency and effectiveness.
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