

Optimizing Feature Set for Click-through Rate Prediction

Fuyuan Lyu^{1*}, Xing Tang^{2*}, Dugang Liu³, Liang Chen², Xiuqiang He², Xue Liu¹

¹School of Computer Science, McGill University, Montreal, Canada ²FiT, Tencent, Shenzhen, China ³Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen, China

Presenter: Fuyuan Lyu

Background

Feature Interaction: <*Male, Montreal>, ...*

Enumerate all combinations

Field: *Gender* Feature: *Male, Female, ...*

Field: *City* Feature: *Montreal, Austin, Shenzhen, ...*

Feature Set

Background

Feature Interaction: <*Male, Montreal>, ...*

Enumerate all combinations

Field: *Gender* Feature: *Male, Female, ...*

Field: *City* Feature: *Montreal, Austin, Shenzhen, ...*

Feature Set

Sub-optimal

Background

Feature Interaction: <*Male, Montreal>, ...*

Enumerate all combinations

Field: *Gender* Feature: *Male, Female, ...*

Field: *City* Feature: *Montreal, Austin, Shenzhen, ...*

Feature Set

Sub-optimal

[4] only focuses on Feature Interaction Selection

• Redundant Features

[1,2,3] only focus on Field-level Feature Selection

- Too Coarse
- Redundant Feature Interactions

[1] Wang, Yejing, et al. "Autofield: Automating feature selection in deep recommender systems." Proceedings of the ACM Web Conference 2022. 2022.

[2] Lin, Weilin, et al. "AdaFS: Adaptive Feature Selection in Deep Recommender System." Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. 2022.

[3] Guo, Yi, et al. "LPFS: Learnable Polarizing Feature Selection for Click-Through Rate Prediction." arXiv preprint arXiv:2206.00267 (2022).

[4] Liu, Bin, et al. "Autofis: Automatic feature interaction selection in factorization models for click-through rate prediction." Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2020.

Problem Formulation

For all possible features

 $X = \{x_1, x_2, \dots, x_m\}$

Aim to select

 $X^g \subseteq X$

subject to

$$\begin{split} & \min_{W} \mathcal{L}(\mathcal{D}|W), \ \mathcal{D} = \{X^g, Y\}, \\ & s.t. \forall x \in X^g, \mathcal{L}(X^g) > \mathcal{L}(X^g - \{x\}), \\ & \forall x \notin X^g, \mathcal{L}(X^g) \geq \mathcal{L}(X^g + \{x\}), \end{split}$$

Jointly consider the influence of feature and its interactions

Select all features that can lower the loss function

Selecting feature and its interactions simultaneously

Traditional pipeline:

- 1. Select the features
- 2. Select the feature interactions

Useful interactions cannot help keeping related features

Selecting feature and its interactions simultaneously

Traditional pipeline:

- 1. Select the features
- 2. Select the feature interactions

Useful interactions cannot help keeping related features

$$g_{\langle i,j\rangle} = g_i \cdot g_j$$

Decomposition

$g_i \in \{0,1\}$: feature selection $g_{\langle i,j \rangle} \in \{0,1\}$: feature interaction selection

Selecting feature and its interactions simultaneously

Traditional pipeline:

- 1. Select the features
- 2. Select the feature interactions

Useful interactions cannot help keeping related features

 $g_{< i,j >} = g_i \cdot g_j$

Decomposition

 $g_i \in \{0,1\}$: feature selection $g_{\langle i,j \rangle} \in \{0,1\}$: feature interaction selection

Granularity from field-level to feature-level

For online advertisement systems #Field $n \le 100$ #Feature $m \approx 10^7$

How to efficient explore larger space?

Selecting feature and its interactions simultaneously

Traditional pipeline:

- 1. Select the features
- 2. Select the feature interactions

Useful interactions cannot help keeping related features

 $g_{< i,j >} = g_i \cdot g_j$

Decomposition

 $g_i \in \{0,1\}$: feature selection $g_{\langle i,j \rangle} \in \{0,1\}$: feature interaction selection

Granularity from field-level to feature-level

For online advertisement systems #Field $n \le 100$ #Feature $m \approx 10^7$

How to efficient explore larger space?

 $||g_i||_0 = ||g_i||_1 \approx ||g_i^c||_1$ $g_i \in \{0,1\}, \ g_i^c \in [0,1]$

learning-by-continuation training scheme

Experiment

Backbone Models:

FM[1], DeepFM[2], DCN[3], IPNN[4]

Baseline Methods:

- AutoField[5], AdaFS[6], LPFS[7]
- AutoFIS[8]

Evaluation Metrics: AUC, Logloss and Feature Ratio

Datasets: Criteo, Avazu, KDD12

Ratio = #Remaining Features/m.

[1] Rendle, Steffen. "Factorization machines." 2010 IEEE International conference on data mining. IEEE, 2010.

[3] Wang, Ruoxi, et al. "Deep & cross network for ad click predictions." Proceedings of the ADKDD'17. 2017. 1-7.

[7] Guo, Yi, et al. "LPFS: Learnable Polarizing Feature Selection for Click-Through Rate Prediction." arXiv preprint arXiv:2206.00267 (2022).

[8] Liu, Bin, et al. "Autofis: Automatic feature interaction selection in factorization models for click-through rate prediction." Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2020

^[2] Guo, Huifeng, et al. "DeepFM: a factorization-machine based neural network for CTR prediction." Proceedings of the 26th International Joint Conference on Artificial Intelligence. 2017.

^[4] Qu, Yanru, et al. "Product-based neural networks for user response prediction." 2016 IEEE 16th International Conference on Data Mining (ICDM). IEEE, 2016.

^[5] Wang, Yejing, et al. "Autofield: Automating feature selection in deep recommender systems." Proceedings of the ACM Web Conference 2022. 2022.

^[6] Lin, Weilin, et al. "AdaFS: Adaptive Feature Selection in Deep Recommender System." Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. 2022.

Over the Industrial Scenario:

Result

- 1. Feature Ratio reduced to 0.3136
- 2. Aver AUC improvement at 0.23% over 3 days

Table 2: Performance Comparison Between OptFS and Feature Selection Methods.

Mathad		FM			DeepFM			DCN			IPNN		
	method	AUC↑	Logloss	Ratio↓	AUC↑	Logloss↓	Ratio↓	AUC↑	Logloss↓	Ratio↓	AUC↑	Logloss↓	Ratio↓
Criteo	Backbone	0.8055	0.4457	1.0000	0.8089	0.4426	1.0000	0.8107	0.4410	1.0000	0.8110	0.4407	1.0000
	LPFS	0.78 <mark>8</mark> 8	0.4604	0.0157	0.7915	0.4579	0.2415	0.7802	0.4743	0.1177	0.7789	0.4705	0.3457
	AutoField	0.7932	0.4567	0.0008	0.8072	0.4439	0.3811	0.8113	0.4402	0.5900	0.8115	0.4401	0.9997
	AdaFS	0.7897	0.4597	1.0000	0.8005	0.4501	1.0000	0.8053	0.4472	1.0000	0.8065	0.4448	1.0000
	OptFS	0.8060	0.4454	0.1387	0.8100 *	0.4415*	0.0422	0.8111	0.4405	0.0802	0.8116	0.4401	0.0719
Avazu	Backbone	0.7838	0.3788	1.0000	0.7901	0.3757	1.0000	0.7899	0.3755	1.0000	0.7913	0.3744	1.0000
	LPFS	0.7408	0.4029	0.7735	0.7635	0.3942	0.9975	0.7675	0.3889	0.9967	0.7685	0.3883	0.9967
	AutoField	0.7680	0.3862	0.0061	0.7870	0.3773	1.0000	0.7836	0.3782	0.9992	0.7865	0.3770	0.9992
	AdaFS	0.7596	0.3913	1.0000	0.7797	0.3837	1.0000	0.7693	0.3954	1.0000	0.7818	0.3833	1.0000
	OptFS	0.7839	0.3784	0.8096	0.7946 *	0.3712*	0.8686	0.7932^{*}	0.3718*	0.8665	0.7950 *	0.3709*	0.9118
KDD12	Backbone	0.7783	0.1566	1.0000	0.7967	0.1531	1.0000	0.7974	0.1531	1.0000	0.7966	0.1532	1.0000
	LPFS	0.7725	0.1578	1.0000	0.7964	0.1532	1.0000	0.7970	0.1530	1.0000	0.7967	0.1532	1.0000
	AutoField	0.7411	0.1634	0.0040	0.7919	0.1542	0.9962	0.7943	0.1536	0.8249	0.7926	0.1541	0.8761
	AdaFS	0.7418	0.1644	1.0000	0.7917	0.1543	1.0000	0.7939	0.1538	1.0000	0.7936	0.1539	1.0000
	OptFS	0.7811 *	0.1560*	0.5773	0.7988*	0.1527*	0.9046	0.7987 *	0.1527	0.8945	0.7976	0.1530	0.8762

Here * denotes statistically significant improvement (measured by a two-sided t-test with p-value < 0.05) over the best baseline. Bold font indicates the best-performed method.

On Criteo, OptFS tends to **reduce feature ratios while keeping the performance**. On Avazu and KDD12, OptFS tends to **boost model performance**.

Transferability Study

Table 4: Transferability Analysis on Criteo and Avazu.

	Torget	Sourco	Metrics					
	Target	Source	AUC↑	Logloss	Ratio↓			
		DeepFM	0.8100	0.4415	0.0422			
	DeepFM	DCN	0.8097	0.4419	0.0802			
	544	IPNN	0.8097	0.4418	0.0719			
60		DCN	0.8111	0.4405	0.0802			
rite	DCN	DeepFM	0.8106	0.4410	0.0422			
0		IPNN	0.8107	0.4410	0.0719			
		IPNN	0.8116	0.4401	0.0719			
	IPNN	DCN	0.8113	0.4404	0.0802			
		DeepFM	0.8114	0.4403	0.0422			
		DeepFM	0.7946*	0.3712 *	0.8686			
	DeepFM	DCN	0.7873	0.3754	0.8665			
		IPNN	0.7872	0.3755	0.9118			
nz		DCN	0.7932*	0.3718*	0.8665			
Vaz	DCN	DeepFM	0.7879	0.3784	0.8686			
A		IPNN	0.7860	0.3762	0.9118			
		IPNN	0.7950 *	0.3709*	0.9118			
	IPNN	DCN	0.7907	0.3747	0.8665			
		DeepFM	0.7908	0.3748	0.8686			

Here * denotes statistically significant improvement (measured by a two-sided t-test with p-value < 0.05) over the best baseline. **Bold** font indicates the best-performed method.

Aim to prove the necessity of end-to-end training

- Transferability lead to performance drop
- feature interaction operations is correlated with the feature set

Thanks for Listening!

- 1. A problem called **feature set selection**: jointly considers feature and feature interaction selection.
- 2. A method named **OptFS**:
 - 1. decomposition trick
 - 2. learning-by-continuation training scheme.
- 3. Superior in efficiency and effectiveness.

Code implementation: https://github.com/fuyuanlyu/OptFS Personal webpage: https://fuyuanlyu.github.io/

