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[1] GPT-4 Technical Report. arxiv.2303.08774
[2] Emergent Abilities of Large Language Models. TMLR.2022
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Model design:“Scaling Laws for Neural Language Mode

Scaling Laws for Neural Language Models
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L= (Crinf2.3 - 108)70.050 ’
‘We study empirical scaling laws for language model performance on the cross-entropy loss. 2 — — — — , 27 ‘ — — —
The loss scales as a power-law with model size, dataset size, and the amount of compute lo=® 1077 107 107 107 10 109 10° 10° 10 10°
used‘ for training, Iwilh some trends span_ning more than seven :_!n;icrs of magnilusie. Othcr Compute Dataset Size Parameters
architectural details such as network width or depth have minimal effects within a wide PF-days, non-embedding tokens non-embedding

range. Simple equations govern the dependence of overfitting on model/dataset size and the
dependence of training speed on model size. These relationships allow us to determine the
optimal allocation of a fixed compute budget. Larger models are significantly more sample-
efficient, such that optimally compute-efficient training involves training very large models
on a relatively modest amount of data and stopping significantly before convergence.

Figure 1 Language modeling performance improves smoothly as we increase the model size, datasetset
size, and amount of comput used for training. For optimal performance all three factors must be scaled
up in tandem. Empirical performance has a power-law relationship with each individual factor when not
bottlenecked by the other two.



Predictability on Downstream Tasks

“Scaling Law" is dominant method
Dominant Method
“Scaling Law"
hypothesized power-law relationship log(L,) ~ wlog(Cy,) + by,

- (,,, : amodel’s computational measures, e.g., training FLOPs.
L,,, :their performance loss, e.g., perplexity.
f : model family, e.g., Llama-2 7B, 13B, and 70B

_ Wy and bf . scaling coefficients customized for each model family.

Fit this formula through repeated scaling experiments, then predict larger-scale (C’'> C) model.
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[3] Predicting Emergent Abilities with Infinite Resolution Evaluation. ICLR 2023
[4] Holistic Evaluation of Language Models. TMLR 2023

Challenges

“Scaling Law" is not enough

1. High Cost
Training Cost[3]: repeated scaling training models (1B, 8B, 70B) in a family.

Inference Cost[4]: Testing various models in various benchmarks, especially for scaled models
(>70B) and Chain-of-Thought(CoT) tasks (e.g., Math Reasoning).

Model Model Creator Modality ~# Parameters  Tokenizer  Window Size  Access | Total Tokens  Total Queries Total Cost
J1-Jumbo v1 (178B) Al21 Labs Text 1788 Al21 2047 limited 7,443,515
J1-Grande v1 (17B) Al21 Labs Text 17B Al21 2047 limited
J1-Large v1 (7.5B) AI21 Labs Text 7.58B Al21 2047 limited
Anthropic-LM v4-s3 (52B) Anthropic Text 52B GPT-2 8192 closed | 767,856,111 842,195
BLOOM (176B) BigScience Text 1768 BLOOM 2048 open 581,384,088 849,303 4,200 GPU hours
TO++ (11B) BigScience Text 11B TO 1024 open 305,488,229 106,072 1,250 GPU hours
Cohere xlarge v20220609 (52.4B Cohere Text 52.4B Cohere 2047 limited 397,920,975 B¢ H2
Cohere large v20220720 (13.1B Cohere Text 13.1B Cohere 2047 limited 5 2
Cohere medium v Cohere Text 6.18 Cohere 2047 limited 5 2 § §
Cohere small v20220720 (410M " Cohere Text 410M Cohere 2047 limited 5 2 $1,743
GPT-J (6B) Eleuther Al Text 6B GPT-J 2048 open 611,026,748 851,178 860 GPU hours
GPT-NeoX (20B) EleutherAl Text 208 GPT-NeoX 2048 open 599,170,730 849,830 540 GPU hours $ 70 K+ an 4 K+
T5 (11B) Google Text 11B Ta al2 open 199,017,126 106,072 1,380 GPU hours
UL2 (20B) Google Text 208 UL2 512 open 199, 106,072 1.570 GPU hours GPU h S
OPT (66B) Meta Text 6G6B oPT 2048 open 612, 851,178 2,000 GPU hours 0 u r
OPT (175B) Meta Text 1758 OPT 2048 open 610, 851,178 3,400 GPU hours
TNLG v2 (6.7B) Microsoft /NVIDIA Text 6.7B GPT-2 2047 closed 417, 590,756 -
TNLG v2 (530B) Microsoft /NVIDIA Text 5308 GPT-2 2047 closed 417,111,519 590,756 -
ici (175B8) OpenAl Text 1758 GPT-2 2048 limited | 422,001,611 $8,440
curie (6.7B) OpenAl Text 6.7B GPT-2 2048 limited | 423,016,414 $846
OpenAl Text 1.3B GPT-2 2048 limited | -
OpenAl Text 350M GPT-2 2048 limited
OpenAl Text Unknown GPT-2 4000 limited ,2
OpenAl Text Unknown GPT-2 2048 limited 120,004,477
text-babbage-001 OpenAl Text Unknown GPT-2 2048 limited | 419,036,038
text-ada-001 OpenAl Text Unknown GPT-2 2048 limited
code-davinci-002 OpenAl Code Unknown GPT-2 1000 limited .
code-cushman-001 (12B) OpenAl Code 12B GPT-2 2048 limited 59,751 Flg u re 1 . I nfe rence Cost Of eaCh
GLM (130B) Tsinghua University Text 130B ICE 2048 open | 106,072 2,100 GPU hours -
YaLM (100B) Yandex Text 100B Yandex 2048 open | 378,607,292 105,093 2,200 GPU hours mOdeI In H E LM BenCh mark.




[5] Textbooks Are All You Need. Arxiv. 2306.11644

[6] CompassBench. https://opencompass.org.cn/doc

2. Missing other factors

Scaling law only consider computational measures factor but ignore many important
factors, e.g., Data Quality [5], Model Hyperparameters, ....

3. Ignore relationship among models and tasks.

% Large Language Model Leaderboard

HELM Leaderboard Select s group

i i i i CompassBench Leaderboard ~ 24-09%  All¥ CompassAcademic Leaderboard ~ 24-07v  All¥
The HELM leaderboard shows how the various models perform across different scenarios and metrics. Core scenarios v
Accuracy | Calibration  Robustness  Fairness  Efficienc linformation  Bias  Toxicity arization metrics O PR
Model $ Meanwinrate S MMW-EM C  Boola-EM $ NarativeQa-F1 S NaturalQuestions (closed) - F1 $  NaturalQuestions (open) - F1 & QUAC-F1 s M
14 Qwen2.5-72B-Instruct 703 13 GPT-40-20240513 77.0
Llama 2 (70B) 0.944 0582 0.886 0.77 0.458 0674 0484 - New
LLaMA (658) 0.908 0.584 0871 0755 0431 0672 0401 . 4 Claude 3.5 Sonnet 20240620 68.9 4 Quwen2-72B-Instruct 73.1
- i 0905 0568 0877 0727 0383 0713 0.445 0
Jextdavinel-002 ) GPT-40-20240513 67.2 &) GPT-do-mini-20240718 72.5
Mistral v0.1 (7B) 0.884 0572 0874 0716 0365 0.687 0423 i
Step-2-16K 65.7 Llama3-70B-Instruct 66.6
Cohere Command Nev . M
0874 0452 0.856 0752 0372 076 0432 o i ’
beta (52.4B)
Mistral-Large-Instruct-2407 65.4 Qwen1.5-1108-Chat 61.7
text-davinci-003 0872 0.569 0881 0727 0.406 0.77 0.525 0 A
Jurassic-2 Jumbo GLM-4-Plus 65.2 Yi-1.5-34B-Chat 60.4
0.824 048 0829 0733 0385 0.669 0435 o ™
(178B)
Llama 2 (13B) 0823 0,507 0811 0.744 0376 0.637 0.424 DeepSeek-v2.5 64.2 InternLM2.5-78-Chat 60.3
New " ! i
TNLG v2 (530B] 0787 0469 0809 0722 0384 0642 039 0
(:308) GPT-40-20240806 63.6 GLM-4-98-Chat 59.5
New )
gpt-3.5-turbo-0613 0.783 0.391 087 0.625 0348 0675 0.485
Doubao-pro-32k-240828 63.2 Qwen1.5-328-Chat 57.1
LLaMA (30B) 0781 0531 0861 0752 0408 0666 039 - bt Deepl
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https://opencompass.org.cn/doc

Pros & Cons of Scaling Law

There exists predictability in LLMSs.

Predictability is limited to one single model family.
Predictability is limited to one metric.

The fitting of the scaling law is cost.

Inference needs inputting transparent design factors.
Neglecting other possible factors, e.g., data quality.

A Summary of Scaling Law
log(Ly,) =~ wyrlog(Cp,) + by,

—

o ghwhE

If predict the performance of LLMs on downstream tasks,
what other methods can we use beyond scaling laws?



Beyond Scaling Law

If predict the performance of LLMs on downstream tasks,
what other methods can we use beyond scaling laws?

HELM Leaderboard Seloct a group:

The HELM leaderboard shows how the various models perform across different scenarios and metrics. Core scenarios
Accuracy Calibration Robustness Fairness Efficiency General information Bias Toxicity Summarization metrics
Model > Mean win rate - MMLU - EM z BoolQ - EM z NarrativeQA - F1 > NaturalQuestions (closed) - F1 .  NaturalQuestions (open) - F1 QuAC - F1

Llama 2 (70B) 0.944 0.582 0.886 0.77 0.458 0674 0484
LLaMA (65B) 0.908 0.584 0.871 0755 0.431 0.672 0.401
text-davinci-002 0.905 0.568 0.877 0727 0.383 0.713 0.445
Mistral v0.1 (7B) 0.884 0.572 0.874 0716 0.365 0.687 0423

Cohere Command

0.874 0.452 0.856 0752 0372 0.76 0432
beta (52.4B)
text-davinci-003 0.872 0.569 0.881 0.727 0.406 0.77 0.525
Jurassic-2 Jumbo

0.824 0.48 0.829 0733 0.385 0.669 0435
(178B)
Llama 2 (13B) 0.823 0.507 0.811 0.744 0.376 0.637 0.424
TNLG v2 (530B) 0.787 0.469 0.809 0.722 0.384 0.642 039
gpt-3.5-turbo-0613 0.783 0.391 0.87 0.625 0.348 0.675 0.485
LLaMA (30B) 0.781 0.531 0.861 0.752 0.408 0.666 039
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Matrix Factorization?



 HELM Core Leaderboard
-- 68 models and 16 tasks, a score

matrix with a density of 82.5%

Pilot Demonstration

Matrix Factorization on HELM Leaderboard (Open-source)

Training/Validation = 10%/90%

Rank Error Distribution

Score Error Distribution

Frequency

« Matrix Factorization (MF)

0.0

0.2

MSE Loss: 0.1528
L1 Loss: 0.30808

0.6 0.8
Prediction Error (Predicted Score - Actual Score)

1.0 12

Frequency
o
o
o

0.00 -

0

10

20

Accuracy: 0.01253
MAE@2: 0.08521

30 40 50 60

Rank Prediction Error (Predicted Rank - Actual Rank)

Training/Validation = 50%/50%

-- # Factor = 10
Score Error Distribution Rank Error Distribution
. . " MSE Loss: 0.01016 0.251 Accuracy: 0.10373
Conclusion: MF can accurately predict L1 Loss: 0.067305 MAE@2: 0.39004

most of the missing scores within a low

error range.
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Rank Prediction Error (Predicted Rank - Actual Rank)

Figure 2. Error Distribution of Predictions based on the open-source
Leaderboard Using Matrix Factorization.



Collaborative Performance Prediction
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Comparison

Cons of Scaling Law
log(Ly,) ~ W log(Chn) + br,

Predictability is limited to one single model family.
Predictability is limited to one metric in one task.
The fitting of the scaling law is cost.

Inference needs inputting transparent design factors.

Neglecting other possible factors, e.g., data quality.

Collaborative Performance Prediction (CPP)

oOghkwhE

Predictability supports cross model-families.
Predictability supports cross tasks.

Low Training Cost.

Predictability supports proprietary model.

Predictability supports more factors beyond scaling law.
Factor-level Interpretability.



[7] OpenLLM, https://github.com/bentoml/OpenLLM

Collaborative Data

We support any score matrixes, including open-source leaderboards and custom leaderboards.

« Open-source Leaderboard

HELM, OpenLLM[7], Compass Sparsity < 15%

e Custom Leaderboard

3 Leaderboard )
. Collect the collaborative #Models = 72
55 Paper/Technical Report g performances #Tasks = 22
#Model Features = 16
31 Model Card _ #Task Features = 4

Sparsity = 44%



[8] open-source and science in the era of foundation models. EMNLP 2024 Keynotes, Percy Liang

Analysis on Custom Leaderboard

* Uneven distribution of testing resources.

Statistic of tasks Statistic of tested models
tested by each model on each task

MMLU and HellaSwag +— RACE-m =i~ ., ¢ LU
BLOOM-T176B

=g

identical models yield varying scores on the same tasks across different studies.

[
o

jury
w

[ury
[=]

Llama 2-7B «— Gopher-1.4B

v

0

* Widespread variations in the scores.

* Missing description/model card. [8]

We encourage everyone should open-source the design factors as many as
possible.



Collaborative Methods

Matrix Factorization & Neural Collaborative Filtering

Let M = {M,,M,,...,Mn} be asetof n LLMs, and T ={T;,T>,...,T,;,} be a suite of m tasks. Define the Score
Matrix S, which is an n X m matrix where each element s;; represents the performance score of model

M; on task Tj. s;; is defined as

score if tested,
S@'j =

unknown otherwise.

Neural collaborative filtering uses a multi-layer perceptron to learn the model-task interaction function to
predict the score s;; for a model ¢ on a task 7,

: Optional
collaborative descriptive factors
models and tasks \»
sij = f(i, ]l
— ML n ,
the latent vectors for embeddings of descriptive
model | and task j factors

Optionally, we can predict a score when only inputting the descriptive factors,
= MLP(ey;, €v5),
Loss function is



Experiment Setting

Evaluation Metric.

Score-Based: MSE & L1 Loss (Predicted Score and Gold Normalized Score)
Rank-Based: Accuracy and MAE@2 (Rank of Predicted Scores and Gold Scores.)

N 1(r; =7 N - <
Accuracy = (Zﬁ_l 1](\; 4 )) x 100%, MAE@?2 = (Zz—l L(lri =7l <2) x 100%,

N

Variation of Models.

Matrix Factorization

Neural Collaborative Filtering

Neural Collaborative Filtering (Factor-enhanced)
Neural Collaborative Filtering (only Factor)

Model Configuration
latent factors = 10, learning rate = 0.01, iteration = 250,000



Descriptive Factors.

Model
Factors Description Embedding
Model Family Type of model family, e.g., LLAMA 2, PYTHIA Categorical Embedding
Pretraining Dataset Size (B) Data size in millions of tokens Numerical Embedding
Parameter Size (M) Number of model parameters in millions Numerical Embedding
GPUh GPU hours consumed Numerical Embedding
FLOPs Floating-point operations count Numerical Embedding
Context Window Max context size in tokens, e.g., 1024, 2048 Categorical Embedding
Batch Size (M) Size of batches in millions,e.g., 1M, 2M Categorical Embedding
Layers Number of layers in the model Numerical Embedding
Number Heads Number of attention heads Numerical Embedding
Key/Value Size Size of key/value in attention mechanism Numerical Embedding
Bottleneck Activation Size Size of activation in bottleneck layers Numerical Embedding
Carbon Emission (tCO2Eq) Carbon footprint of training Numerical Embedding
Task
Ability Type of targeted cognitive ability, e.g., reasoning Categorical Embedding
TaskFamily Related task family ,e.g., ARC Categorical Embedding
Output Format Format of task output, e.g., binary Categorical Embedding
Few-Shot Setting Description of few-shot learning setting,e.g., zero-shot, 32-shot = Categorical Embedding

Partition.

Validation Set = 5%, because the sparsity of the original matrix is 44%.



Collaborative Filtering Mechanisms is Feasible.

1.0 g

Actual score
o o © o
J B & [+]

=
=}

0.0 0.2 0.4 0.6 0.8 1.0
Predicted score

Matrix Factorization

1.0

0.8

0.6

0.4

0.2

0.0

Main Result

ae

02 04 06 08 1.0
Predicted score

Neural Collaborative Filtering

1.00

0.8:1

0.6°1

0.4+

0.221

0.00

0.0 0.2 04 06 08 1.0

Predicted score

Neural Collaborative Filtering
(Factor-enhanced)

Predicted Score =~ Gold Score

1.01

0.8

0.6

0.4

0.2

0.0 4

00 02 04 06 08 10
Predicted score

Neural Collaborative Filtering
(only Factor)



Score-Loss Rank-Acc

Prediction Method MSE Loss | Mean L1 Loss | Mean Prec.(%) T MAE@2(%) 1
Matrix Factorization 2.16e~2(1.19¢ %) 9.47e¢~2(2.89¢~ %) 44.33(0.69) 83.16(0.73)
Neural Collaborative Filtering ~ 1.58e 2(4.22¢7%)  8.94e~2(3.10e %) 41.76(1.22) 84.98(0.42)
+ Factor Enhanced  1.25e2(3.35¢"%) 7.88e 2(6.31e %) 45.45(0.33) 84.54(0.27)
Only Factor 1.75e7%(2.07¢ %)  8.5Te %(1.48¢ %) 33.47(0.12) 84.08(0.37)

Table 1: Comparison of prediction methods for LLM performance. Bold indicates the best-performed.

* Further Improvement Through Model Development.
NCF > MF

 Increasing Accuracy by Incorporating Design Factors
NCF(Factor Enhanced) > NCF

« Supporting Predictions based Solely on Factors.

Only Factor



Generalization for New Model

CPP-0 = predicting a model with no prior testing information.
CPP-2 = prediction a model with prior testing information on 2 tasks.

CPP demonstrates greater adaptability than SL.

Models -- Methods

(a) With no prior testi/ng_'gformation (CPP-0)

1.0 -
o e llama_2 70B -- CPP
llama_2 70B -- SL
0.8 m llama 65B -- CPP
llama 65B -- SL
A Pythia 12B -- CPP
g 06 Pythia 128B -- SL
% ' = falcon 1808 -- CPP
— . falcon 180B -- SL
= .
2 04 .
[*] A
4 II’A
‘ A
0.2
. MSE_Loss@CPP: 0.0280
5 ca / ng / aw MSE_Loss@SL: 0.0208
0.0

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Score



« CPP can utilize other tasks’ performance to enhance prediction.

(b) With prior testing information on 2 tasks (CPP-2)

1.0 Models -- Methods
e llama_2 70B -- CPP
llama_2 708 -- SL
0.8 m llama 65B -- CPP
llama 65B -- SL
a Pythia 12B -- CPP
g 0.6 Pythia 128 -- SL
m“ % falcon 180B -- CPP
— falcon 180B -- SL
=
2 04 CPP-2 better than CPP-0
0
-
0.2
MSE_Loss@CPP: 0.0151
MSE_Loss@SL: 0.0201
0.0 CPP-2
0.0 0.2 0.4 0.6 0.8 1.0

Predicted Score

Dynamic Predictability = Iteration of ““evaluation” and " prediction”
evaluating simpler tasks can improve predictions for LLM performance on more

complex tasks.




Generalization for New Task

CPP-TO = predict performance on one task with no prior testing information;
CPP-T2 = predict performance on one task with prior testing information on 2 models.

Models BoolQ(0-shot) BIG-bench hard(3-shot) HellaSwag(10-shot) HumanEval(pass@1)

CPP-TO 0.02201 0.07103 0.03414 0.1244
CPP-T2 0.0182 0.00725 0.02506 0.0763




Predicting Performance on

Reasoning Tasks

1.0
“Emergent” phenomena in Complex Reasoning Tasks: os
challenges associated with predicting performance from
smaller models(7B) when the scale of a model expands .
significantly (70B), resulting in discontinuous leaps in § o0
model capabilities. E
— Difficult to predict "o
0.2
GSM8K, BBH, HUMANEVAL, MBPP
0.0

Complex

Complex Reasoning and CoT Task Performance

Maodels and Methods
e llama_2 70B predicted by CPP /'
llama_2 70B predicted by SL ’

m llama 65B predicted by CPP P
llama 65B predicted by SL /

4 pythia 12B predicted by CPP 7
pythia 12B predicted by SL ’

» falcon 180B predicted by CPP i
falcon 1808 predicted by SL

” MSE Loss@CPP = 0. 015121
. MSE Loss@SL =0.015207

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Score

CPP better than SL




Factor Importance Analysis

CPP provides a base to analyze each design factor’s importance

The Shapley value, ¢;(v), quantifies the average marginal contribution of a factor i across all
possible combinations of factors, and we utilize Shapley-Value for Factor Importance Analysis.

Model Factor

-Mean Shapley Value
2, Training Dataset Sizs TaSk Factor
Data Size 0.039: -Mean Shapley Value
Model Family Model Famit
) o Ability
Batch Size KhS00 0.0333 WDVIep St -
xt Windot Ability Family
Context Window 0.011 0.0250 W40 %e o o o
rrrr Task Family
FLOPs 1 ”""“; Y Few-shot -n
Layers 4 ey Few-shot 0.0241
: Output-format woee =
Param. Size - Pard ";‘;; Output 0.0235
h PUL I T T T T T T T T T T -
GPUh b 500 = 7 e 0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175
Num Headers - e Mean Shapley Value Shapley Value (by prediction Loss)
s e be nis [( E
Carl)l)ll Emlsslon ] Carbon Emission (Cg;;;])
Activation Size ectactiyation dze

Mean Shapley Value

Model Factors

Shapley Value (by prediction Loss)

Task Factors

» Besides Data Size and Param.Size, other design factors significantly influence predictive outcomes.
» Task factors also have an important role in prediction.



Conclusion

» Predictability beyond Scaling Law

« Relationship Research among Models and Tasks-level
We need collaborative research via open-source design factors
 Efficient Evaluation with Dynamic Predictability
Predictability==——= Evaluation



Fun Facts

[Submitted on 17 May 2024 {v1), last revised 1 Oct 2024 (this version, v3)]
Observational Scaling Laws and the Predictability of Language Model Performance

Yangjun Ruan, Chris J. Maddison, Tatsunori Hashimoto

Understanding how language model performance varies with scale is critical to benchmark and algorithm development. Scaling laws are one approach to building this understanding, but the requirement of training models across many different scales has limited their use. We propose an alternative, observational approach that
bypasses model training and instead builds scaling laws from ~100 publically available models. Building a single scaling law from multiple model families is challenging due to large variations in their training compute efficiencies and capabilities. However, we show that these variations are consistent with a simple, generalized scaling law
where language model performance is a function of a low-dimensional capability space, and model families only vary in their efficiency in converting training compute to capabiliies. Using this approach, we show the surprising predictability of complex scaling phenomena: we show that several emergent phenomena follow a smooth,

sigmoidal behavior and are predictable from small models; we show that the agent performance of models such as GPT-4 can be precisely predicted from simpler non-agentic benchmarks; and we show how to predict the impact of post-training interventions like Chain-of-Thought and Self-Consistency as language model capabilities
continue to improve.

Comments: Accepted at MeurlPS 2024 as a spotlight
Subjects Machine Learning (cs.LG); Artificial Intelligence (cs.Al); Computation and Language (cs.CL); Machine Learning (stat ML)
Cite as arXiv.2405.10938 [cs.LG]

(or arXiv:2405.10938v3 [cs.LG] for this version)

hitps://doi.org/10.48550/arxiv.2405.10938 ﬂ

Maybe we should aim higher and be more confident ©



Thank you~
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