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ABSTRACT

Fund allocation has been an increasingly important problem in the financial do-
main. In reality, we aim to allocate the funds to buy certain assets within a certain
future period. Naive solutions such as prediction-only or Predict-then-Optimize
approaches suffer from goal mismatch. Additionally, the introduction of the SOTA
time series forecasting model inevitably introduces additional uncertainty in the
predicted result. To solve both problems mentioned above, we introduce a Risk-
aware Time-Series Predict-and-Allocate (RTS-PnO) framework, which holds no
prior assumption on the forecasting models. Such a framework contains two fea-
tures: (i) end-to-end training with objective alignment measurement, (ii) adaptive
forecasting uncertainty calibration, and (iii) agnostic towards forecasting models.
The evaluation of RTS-PnO is conducted over eight datasets from three categories
of financial applications: Currency, Stock, and Cryptos. RTS-PnO consistently
outperforms other competitive baselines. The code is available here[ﬂ

1 INTRODUCTION

Fund Allocation has been an increasingly important problem in financial technology. Proper fund
allocation can reduce the cost of financial operations. Previous studies allocate funds across dif-
ferent assets, such as stocks and currencies (Kacperczyk et al.| (2016)). However, one commonly
overlooked aspect is that the price of assets tends to vary rapidly over time, making the timing of
acquiring assets equally important. This paper aims to investigate the fund allocation throughout the
time dimension. Specifically, the goal is to acquire a certain amount of assets at minimal cost over a
period of time.

One naive solution for asset allocation is to adopt SOTA time-series (TS) forecasting models (Zeng
et al. (2023); Nie et al.| (2023))) directly to predict the price of the target asset over a period of time
and heuristically select the lowest point, given that the price of assets is sequentially ordered as a
time series. However, one fundamental problem of such a solution lies in the external constraints.
Financial markets usually have auxiliary regulations such as risk management or internal controls.
Hence, the lowest point is not necessarily feasible in certain cases.

To deliver a feasible and accountable action, a Predict-then-Optimize (PtO) framework is commonly
introduced (Xia et al.[ (2023); Elmachtoub et al.| (2020); |Wang et al.| (2021)). The PtO framework
intuitively decomposes the task in two sequential steps: predict and optimize. After obtaining the
forecasting result under the supervision of future values, it subsequently utilizes off-the-shelf com-
mercial solvers, such as Gurobi (Llc. (2019)) or COPT (Ge et al.| (2022)), to obtain solutions with
given constraints. Such a design is intuitively based on the hypothesis that a higher prediction accu-
racy (measured by prediction metrics such as MSE) would result in better decision quality (measured
by decision metrics such as Regret) with theoretical support (Balghiti et al.| (2019)). The effective-
ness of the PtO paradigm has been successfully demonstrated in previous industrial applications,
such as courier allocation (Xia et al. (2023)).

However, adopting the PtO paradigm has certain challenges that have not been resolved. First, both
empirical (Geng et al.|(2024))) and theoretical (Elmachtoub & Grigas|(2022); Liu & Grigas| (2021))

"https://github.com/fuyuanlyu/RTS-PnO
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gaps are witnessed between prediction objectives and business decision goals. The time-series fore-
casting models aim to accurately predict future prices across all time stamps. In other words, the
value of all time stamps contributes equally to the training loss, e.g. MSE. In contrast, the optimiza-
tion process tends to care more about extreme cases, such as the minimal or maximal values. By
solving them in two subsequent steps, the PtO paradigm could eventually lead to suboptimal de-
cisions. Additionally, the frequencies of financial data tend to be higher (minute-level), eventually
making them harder to predict (Bergmeir| (2024)). Second, such a paradigm overlooks the uncer-
tainty of forecasting. The consequences of a bad financial decision could lead to huge losses for
both the company and the customer. Hence, proposing an uncertainty measurement approach that
correlates directly with the forecasted result is important. However, these methods tend to suffer
from Previous research tends to rely on probabilistic models forecasting both the result and its un-
certainty (Salinas et al.| (2020); |L1 et al.| (2022))). However, these methods suffer from cumulative
errors as they decode each time step in a recursive manner. This drawback makes them unsuitable
for real-world tasks requiring a long forecasting period. Therefore, an uncertainty quantification
measure that is model-agnostic and can forecast long periods directly is desired.

To unifiedly solve the two problems mentioned above, we propose a risk-aware time-series fore-
casting Predict-and-Allocate (RTS-PnO) framework to solve the fund allocation problem in the time
domain. The RTS-PnO framework features three things: (i) end-to-end trainable with objective
alignment, (ii) adaptive uncertainty measurement, and (iii) agnostic towards forecasting models. To
alleviate objective mismatch between prediction and optimization, RTS-PnO adopts the recently
proposed Predict-and-Optimize (PnO) paradigm (Elmachtoub & Grigas| (2022)), also known as
decision-focused learning (DFL). The PnO paradigm directly trains the forecasting model with
surrogate losses approximating the feedback from the optimization stage. Though a decrease in
prediction accuracy is witnessed under certain cases, an increase in the decision quality can be wit-
nessed (Geng et al.|[(2024)). Additionally, inspired by the success of conformal prediction and its
extension in the time series domain (Stankeviciute et al.| (2021); [ Xu & Xie| (2021} 2023)), we pro-
pose to measure the forecasting uncertainty adaptively during the training loop. Such a design can
iteratively calibrate the uncertainty condition in the surrogate problem, yielding a better decision.
Finally, all the designs of RTS-PnO do not make any prior assumptions about the architecture of
forecasting models. Therefore, it is easy to update the forecasting models with advanced ones in
the future. Our method is evaluated on eight public datasets originating from three categories of
financial applications, where RTS-PnO consistently yields better performances than other baselines.
To sum up, our contributions can be summarized as follows:

* We first study the fund allocation over the time domain, where the prices of assets vary on
the time dimension.

* To align the training objective of time-series forecasting models and business criteria, we
propose two model-agnostic frameworks, named RTS-PtO and RTS-PnO. RTS-PnO adopts
an end-to-end training paradigm driven by the final objective and adaptively calibrates the
uncertainty constraint during the process. RTS-PtO adopts a two-stage solution by training
a prediction model and then solving the optimization with the fixed uncertainty constraint.

» Extensive evaluation is conducted on eight datasets, proving the effectiveness of the pro-
posed frameworks.

2 RELATED WORK

2.1 TIME SERIES FORECASTING

Modern architectures for time series forecasting aim to extend the forecasting horizon and improve
long-term accuracy. Inspired by the success of Transformer-based models in capturing long-range
dependencies, researchers have explored various adaptations of the Transformer architecture for
this task. These include i) reducing computational complexity to sub-quadratic levels using sparse
(Zhou et al.|(2021)) and hierarchical (Liu et al.|(2022)) attention, ii) extending the attention mecha-
nism’s point-wise dependency modelling to capture segment-wise (Li et al.[(2019)) and patch-wise
dependencies (Nie et al.| (2023); |[Zhang & Yan|(2023))), and iii) modifying the attention mechanism
to incorporate domain-specific processing techniques (Wu et al.| (2021); [Zhou et al, (2022)). Be-
sides Transformer-based models, modern temporal convolutional networks have also been shown
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to achieve competitive performance. MICN (Wang et al.| (2023)) combines local and global convo-
lutions to better model long sequences, while TimesNet (Wu et al.| (2023))) reshapes the 1D series
into 2D matrices based on salient periodicities to jointly model intra-period and inter-period vari-
ations. In fact, with the recent rise of linear models (Zeng et al| (2023)) and MLPs (Ekambaram
et al. (2023)), the de facto neural architecture for this task remains undecided. In this work, we
demonstrate the wide compatibility of RTS-PtO and RTS-PnO across various model architectures.

One drawback of the above-mentioned methods is the lack of uncertainty quantification. Existing
approaches resort to generative modeling (Salinas et al.| (2020); [Li et al.[ (2022)), which naturally
captures data variation. However, these approaches are often limited to short-term prediction, as
modelling the joint data probability becomes exponentially difficult. Alternatively, we leverage the
conformal prediction framework to characterize uncertainty for longer series (Stankeviciute et al.
(2021); Xu & Xie| (2021} |2023))), which we show empirically can help achieve satisfactory perfor-
mance across different datasets.

2.2 FroMm P1TO TOo PNO

The predict-then-optimize (PtO) can be viewed as an abstractive problem for many real-world ap-
plications, such as portfolio management or power scheduling, requiring both predicting unknown
values and optimizing the target given these unknown values (Bertsimas & Kallus| (2020); Balghiti
et al.[(2019)). Such a paradigm has been recently extended to other large-scale applications, such
as carrier allocation (Xia et al.| (2023))). However, it is believed that a misalignment of targets exists
between prediction and optimization stages. Researchers are increasingly interested in training the
prediction model directly targeting the optimization goal, commonly known as predict-and-optimize
(PnO) (Geng et al.[(2024)); Vanderschueren et al.| (2022); Liu & Grigas| (2021)) or decision-focused
learning (Mandi et al.| (2024)). The core challenge is to obtain meaningful gradients for model up-
dating, given the optimization stage. Certain researchers adopt analytical approaches and aim to
make the optimization layer differentible (Amos & Kolter| (2017);|Agrawal et al.[(2019)). However,
these works tend to rely on strong requirements on the objective functions or constraints, restricting
their application scopes in reality. Other researchers (Mulamba et al.| (2021)); Elmachtoub & Grigas
(2022)) instead adopt surrogate loss for the optimization layer and prove its convergence both theo-
retically and empirically. Our RTS-PnO first extends the application of the predict-and-optimization
paradigm to large-scale industrial problems.

3 METHODOLOGY

In this section, we introduce the problem formulation of the fund allocation over time in Section[3.1]
Section [3.2] details the two stage solution RTS-PtO based on predict-then-optimize. Section [3.3]
details the end-to-end approach RTS-PnO.

3.1 PROBLEM FORMULATION

In this seciton, we propose the formal formulation of fund allocation over time dimension. Without
loss of generality, we focus on univariate series. The formulation for multi-variate time-series can
be derived easily. Suppose the unit price of certain asset at time step ¢ is defined as p;, then the unit
price of that asset can formulate a time series, denoted as:

DP1,D2, " De—1,Dt | Peg1,Pet2,

known unknown
The goal of fund allocation over time is to acquire certain amount of asset in H future time steps
[Pt+1, Pr+2s -+, De+H), at the lowest cost. This can be formulated as:
min a X [pey1, Pey2, -, PevH] -

Here a € A denotes the allocation results, and A C [0, 1] represents the feasible allocation space.
Again, we can assume the unit amplitude assumption on a, denoted as Y a = 1. Therefore, the final
conclusion can be formulated as:

min a X [pyy1,Pig2, D H] -

1
s.t.Za:l,aeﬂ,ﬂg[O,l]H. 0
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Although the future price [psi1, P2, ,Pi+m] has ground truth values, these values are un-
known by the time ¢ when we make the allocation. Therefore, we need to forecast the future price
and denote the predicted result as [p¢41,Pryo, - ,Pr+m]. Hence, we propose two solutions to
solve the above problem. First is a Predict-then-Optimize (PtO) framework, which treats a and
[Pe+1,Dt+2s -, Pr+m| as independent variables. It make the prediction first, then optimize a given
the predicted result. Second is a Predict-and-Optimize (PnO) framework, which treats a as a func-
tion of [Ps41,Pr+2, -+ , Petmr) and conduct prediction and optimization simultaneously.

3.2 RTS-PTO: A TWO-STAGE SOLUTION WITH UNCERTAINTY CONSTRAINTS

In this section, we first introduce the Risk-aware Predict-then-Optimize (PtO) framework, which
is commonly-adopted by similar problems (Xia et al.| (2023))). The PtO solution naturally consists
of two steps: (i) predicting the future price of asset given the historicial records and contextual
information and (ii) obtain the allocation result based on the predicted price. The first step, like
other forecasting problems, aims at accurately predicting the prize in the future. The second step, on
the other hand, can be viewed as solving an optimization problem targeting minimal cost reduction
under constraints. Additionally, we propose an additional uncertainty constraint on the forecasted
results to avoid over-aggressive decisions.

3.2.1 PREDICTION STAGE

During the first forecasting stage, we aim to forecast the future H steps [pr1,--+ ,pr+m]. For
simiplicity, we denote this target H steps series as yr. The forecasting model takes the previous
M steps [pr—nr+1,- - ,Pr—1,Pr| as input, simplified as 2. On certain tasks, additional content
information, denoted as ¢y, may also be provided. The forecasting model M (-) then predicts the
target as follows:

yAT = M(I.Tv CT)7
gr £ [pra1, - brenl, 2
T S [prMJrl» T ,pT—LpT]’

where g denotes the predicted result. The training objective of the forecasting model is to re-
duce the distance between the forecasted value {7 and ground truth y7. Certain prediction loss ),
is adopted to measure such distances. Hence, the training objective of forecasting model can be
denoted as follows:

1 . N
Lp = 1= min Z p(yr, 9r)- 3)
|1 6) (z7,yT,cT)ED

Note that the Mean-Square-Error (MSE) Loss is widely adopted as the prediction loss £,,(-) on each
data instance (Nie et al.[(2023);|Zeng et al.| (2023)).

3.2.2 OPTIMIZATION STAGE

After obtaining the prediction result ¢ from the well-trained forecasting model M (-), Equation
can be viewed as an optimization problem via replacing the parameters yr with the prediction result
. Hence Equation [T]is derived into:

min a - g

st.y a=1laea,AC01]". @
The above equation can be observed as optimization a while treating the forecasted result g as
ground truth values. Hence, the accuracy of yr becomes important for the quality of final deci-
sion. However, it is recognized that accurately forecasting time-series is not an easy task (Bergmeir
(2024)). To reduce the side-effort of inaccurate prediction, we additionally propose a forecasting
uncertainty constraints that adaptively adjust itself to constraint on the feasible position of alloca-
tion. Suppose a risk measurement can be obtained on each allocation position, as we will elaborate
in Section the risk vector r can be represented as:

reRY, Ryg={z€R|z>0} 5)
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Hence, we define a new risk-aware feasible space A (r) as follows:
A(r)={a-r<ry|ac.a} (6)

Here rg is a pre-defined scalar representing the risk tolerance level. A smaller ro would lead to
a tighter constraint on the forecasting uncertainty and a stronger preference towards forecasting
results with high confidence. It is easy to observe that A / (r) € A. Correspondingly, the objective
of Equation ] becomes to solve the following task:

a*(gyr) = argmin a(gr) - gr
sty a(jr) =1a(ir) € A (r), A (r) C [0,1]7.

Here a*(yr) refers to the optimal allocation under the prediction gp. It is also known as the pre-
scriptive decision (Bertsimas & Kallus|(2020)). Once the future asset price yr is known, the optimal
allocation result a*(y7) can be readily obtained by solution Equation [I{as an continuous optimiza-
tion problem. a*(yr) is also known as the full-information optimal decision (Bertsimas & Kallus
(2020)).

After obtaining both the optimal allocation a*(yr) and prescriptive decision a* (), we are able
to use the regret metric, defined as the cost gap between these two allocation plans, to evaluate the
quality of decision. This can be written as:

)

regret 2 |a*(yr) - yr — a*(97) - yr|. ®)

A lower regret indicates the predicted allocation a*({jr) is closer to the optimal allocation a*(yr),
indicating a lower operation cost and a better decision quality.

3.2.3 UNCERTAINTY QUANTIFY VIA CONFORMAL PREDICTION

In this section, we focus on how to quantify uncertainty of arbitrary forecasting model, and more
importantly, how to unitlize such uncertainty to guide the training of our framework. Motivated by
previous work (Stankeviciute et al.| (2021)), we adopt the conformal prediction to measure the posi-
tional uncertainty of time series forecasting. The pesudo-code for positional uncertainty calculation
is shown in Algorithm 1]

Algorithm 1 Calculating Positional Uncertainty for Forecasting Model

Require: Calibration Dataset ., coverage rate y
Ensure: Positional Uncertainty r
1: Initialize Positional Uncertainty Sets ey ={ }, -+, ey ={ }
2: for for data instance (7, yr, cr) in Calibration Set D, do
3: Calculate §r = [pr41, - - Priu) given Eq.[2]
4 for hinl,--- ,H do
5: €n < e U{|Pr4n — prsnl}
6: for hinl,---  H do
7 TR = <7|C?,§)‘:‘r17) - quantile in ¢y,
8

: Returnr = [ry, 79, -+ ,7H]

3.2.4 OVERALL TRAINING PROCESS OF RTS-PTO

The pseudo-code for the training of the RTS-PtO framework is shown in Algorithm 2]

3.3 RTS-PNO: AN END-TO-END SOLUTION WITH ADAPTIVE UNCERTAINTY CONSTRAINTS

In this section, we propose our model-agnostic framework RTS-PnO. As stated in Section [I] the
model differs from the previous two-stage solution on two aspects: (i) An end-to-end training
predict-and-optimize paradigm aiming at aligning both the training objective and business goal,
and (ii) Adaptive risk-aware constraint to mitigate the forecasting error of prediction model. We
will detailedly discuss them in the following paragraphs.
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Algorithm 2 The Training Process of RTS-PtO Framework

Require: Dataset D, risk tolerance 7y, epoch number T’
Ensure: A allocation function a*(¢r) produce allocation with forecasting result §r
1: for Epocht=1,---,T do
2: Update the forecasting model M given Eq. [14]
3: Obtain the positional uncertainty r for epoch ¢ given Alg.
4: Obtain the allocation feasiable space A (r) given Eq.
5: Obtain the prescriptive decision a*({r) given Eq.

3.3.1 END-TO-END TRAINING WITH PNO FRAMEWORK

Unlike the PtO framework, the predict-and-optimize (PnO) framework directly trains the model with
the feedback from the optimization stage. To align both the training process and optimization goal,
a surrogate loss is proposed to make the optimization process in the second stage differentiable,
denoted as:

. L.  wn
Lo = — min Z [O(a (yT)aa(yT)) )
DI M()
(a(gr),alyr))€D
Then also exist several opinions for the surrogate loss £, (-) for the optimization stage. Here we
adopt the SPO+ loss (Elmachtoub & Grigas|(2022))), which is widely adopted in classic operation

research problems and is verified to have outstanding performances (Geng et al.[(2024); Mandi et al.
(2024)). The SPO+ loss is optimized directly on the prescriptive decision a* (), denoted as:

lo(a*(97)) = 2 (yr)jr — a* (yr)yr + Iglea;l({ayT —2ag;}. (10)
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Figure 1: Empirical observation on the trending of uncertainty during the training process. Here, we
report the minimum, maximum, mean, and median of the positional uncertainty.

3.3.2 ADAPTIVE UNCERTAINTY CONSTRAINTS

Although the SPO+ loss (Elmachtoub & Grigas| (2022)) theoretically aligns the training objective
and business objective, empirical experiments suggest there is still a significant gap between these
two (Geng et al.| (2024)). Hence, it is deemed necessary to introduce the uncertainty constraint as
mitigation towards inaccurate prediction and objective mismatch.

As the risk vector r reflects the forecasting uncertainty given the position, it is easy to notice that as
the parameters within the forecasting model update, its forecasting uncertainty changes accordingly.
The empirical studies in Figure[I)on four datasets show that the uncertainty gradually reduces during
the training process. Therefore, adopting a fixed constraint like the PtO framework would yield an
outdated uncertainty constraint and suboptimal decision. To solve such a problem, we propose to add
an adaptive risk constraint that updates the risk vector r; simultaneously after each epoch following
Algorithm [T] Such a design would better reflect the current uncertainty of the forecasting model.
Additionally, it becomes hard to fix a constant on the risk-tolerance threshold ry. Therefore, we
define r( as the a-quantile of the risk vector r, denoted as:

ro = o — quantile in r (11)
Hence, we define a new risk-aware feasible space A ' (ry) as follows:

A (ry) ={a-r; <o —quantileinr; |a € A} (12)
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Correspondingly, Equation [I0] derives into:
lo(a* (gr),r) = 22" (yr)yr — a* (yr)yr + max ){ayT —2agr}. (13)
The final training objective of RTS-PnO can be written as:
min L, + 5 - Ly, (14)
M)

where the prediction loss £}, is introduced as a regulator to balance the tradeoff between forecasting
accuracy and decision quality, and 5 denotes its coefficiency.

3.3.3 OVERALL TRAINING PROCESS OF RTS-PNO

The pseudo-code for the training of the RTS-PnO framework is shown in Algorithm 3]

Algorithm 3 The Training Process of RTS-PnO Framework

Require: Dataset &), uncertainty quantile «, loss balancer 3, epoch number T’
Ensure: A allocation function a*(gr) produce allocation with forecasting result 7, a forecasting
model M (-) outputs forecasting result gz
1: for Epocht=1,---,T do
2 Update the forecasting model M given Eq. [14]
3: Update the positional uncertainty r; for epoch ¢ given Alg.[I]
4 Update the allocation feasible space A (r;) given Eq.

4 EXPERIMENT

In this section, to comprehensively evaluate our proposed RTS-PnO, we design experiments to an-
swer the following research questions:

* RQ1: Can RTS-PnO achieve superior performance in terms of decision quality compared
with other baselines?

* RQ2: How does the forecasting model influence the overall performance in terms of deci-
sion quality?

* RQ3: How does the adaptive uncertainty design influence the performance in terms of
decision quality?

* RQ4: How efficient is RTS-PnO compared to other methods?

* RQS5: How does the Predict-and-Optimize design influence the forecasting performance?

4.1 EXPERIMENTAL SETUP

4.1.1 TIME-SERIES FORECASTING MODELS AS BACKBONES

In the experiment, we adopt four SOTA time-series forecasting models as the backbone. PatchTST
(Nie et al.[(2023)) is adopted as the default backbone without specification. DLinear (Zeng et al.
(2023))), TimesNet (Wu et al.| (2023)) and FEDformer (Zhou et al.| (2022)) are also included as
backbones. We further introduce the setup of these backbones in Appendix[A.1]

4.1.2 BASELINES

In the following experiment, we adopt the following optimization baselines:

* Forecasting-Only: The forecasting-only method only make the decision based on the fore-
casted result. Specifically, it follows a greedy approach by selecting the lowest k points in
the future and evenly distributing the asset quota among these time steps. Here, we adopt
Top-1 and Top-5 as baselines.
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* Risk-Avoiding: The Risk-Avoiding method focuses on the worst-case scenarios. Specif-
ically, it selects the k points with the lowest upper bound for the forecasting and evenly
distributes the asset quota among these time steps. It adopts the uncertainty quantification
approach in Algorithm[I]to calculate the upper bound. Here, we adopt Top-1 and Top-5 as
baselines.

4.1.3 BENCHMARKS

We evaluate the performance of different approaches on eight datasets: USD2CNY, USD2JPY,
AUD2USD, NZD2USD, S&P 500, Dow Jones, BTC and ETC, from three financial scenarios: Cur-
rency, Stock and Crypto. Details about these datasets are shown in Appendix The statistics of
these datasets are shown in Table E} The processed dataset is available here (Author (s)).

4.1.4 METRICS

To measure the decision quality of different methods, we adopt the commonly used metric regret
defined in Equation E] as the metric (Mandi et al.| (2024)); (Geng et al.| (2024); [EImachtoub & Grigas
(2022)). Considering the rapid changing of the asset price in certain datasets, such as BTC and ETH
from the Cryptos domain, solely adopting regret would favour the model making a good decision in
extreme cases. Hence, we additionally adopt the relative regret, abbreviated as R-R, which denotes
the regret with the optimal value at that time step. This can be formulated as:

RR. A _ regret _ [a'(yr) yr —a"(gr) -yr|
" optimal cost a*(yr) - yr '

(15)
For both regret and R.R., a lower value indicates the decision is closer to the optimal one, which is
naturally a higher-quality decision.

Apart from the decision quality, we also need to measure the forecasting ability in RQS5. Here, we
adopt MSE and MAE as forecasting metrics, following previous works in the time-series forecasting
domain (Nie et al.| (2023); Wu et al.[(2023); Zeng et al.| (2023)); Zhou et al.| (2022)). For both MSE
and MAE, a lower value indicates a higher forecasting accuracy.

4.2 MAIN EXPERIMENT (RQ1)

The overall performance of the proposed RTS-PnO and other baselines on eight benchmarks is
reported in Table|l} We summarize our observations below.

Table 1: Main Experiment with PatchTST as Forecasting Model

Forecasting-Only Risk-Avoid Relative
Category Dataset Top-1 [ Top-5 Top-1 [ Top-5 RTS-PO RTS-PnO Improvement

regret] R.R.] regret] R.R.] | regret] R.R.] regret] R.R.] | regret] RR.] | regret] R.R.] | regret(%) R.R.(%)

USD2CNY | 36.88 5.10 37.00 512 35.80 495 3583 4.96 3574 494 31.68 4.38 12.82%  12.79%

Currency USD2JPY 5450 3492 5421 3473 | 49.66 3190 50.01 3212 | 5211 32.66 | 48.77  31.25 1.82% 2.08%
AUD2USD | 1956  29.60 19.92  30.15 1938 2936 1949 29.52 1948 2951 19.06  28.84 1.68% 1.80%

NZD2USD | 1743 2875 17.66  29.14 1654 2729 1664 2744 | 1682 2775 | 15.68 25.85 | 5.48% 5.57%

Stock S&P 500 13499 425 13547 424 [ 12250 384 12424 390 [ 12606 3.94 124.05  3.90 -1.27% -1.56%
Dow Jones | 1090.88 4.16 107579 4.09 | 1022.73 391 1032.21 393 | 102290 3.92 | 997.52 3.82 2.53% 2.36%

Cryptos BTC 215978 446 216796 447 | 185621 390 185857 391 [ 192465 396 | 184326 3.70 0.70% 541%
P ETH 151.14 556  149.61 548 131.41 4.68 13142  4.68 | 138.60 4.96 | 13140 473 0.00% -1.07%

Avg. Rank 538 55 5.63 55 2 1.88 338 3.13 35 35 1.13 1.25

Here bold font indicates the best-performed method and underline font indicates the second best-performed

method. We also report the average rank of each method across all datasets. Notice that for the Currency

category, all regret and R.R. omit the scaler x 10~*. For the rest category, all R.R. omit the scaler x 102,
First, our RTS-PnO proves to be effective compared with all other baselines in terms of both absolute
regret and relative regret. In most datasets, the RTS-PnO method demonstrated improvements in
terms of absolute regret (Abs-R) and relative regret (Rel-R). The RTS-PnO framework also achieved
the best average ranking in both absolute and relative risks. However, the improvement brought by
RTS-PnO differs on various datasets. For instance, on the USD2CNY dataset, RTS-PnO brings
12.82% and 12.79% improvement in terms of absolute and relative regrets. In contrast, on the S&P
500 dataset, RT'S-PnO ranks second among all baselines.

Secondly, the RTS-PtO framework outperforms the forecasting-only approach in multiple datasets,
especially in the stock market (e.g., S&P 500 and Dow Jones). This indicates that combining pre-
diction and optimization in a two-stage process can improve decision quality.
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Thirdly, the risk-avoiding strategy performed well across multiple datasets, particularly in the cryp-
tocurrency and stock domains. For instance, on both S&P 500 and ETH datasets, risk-avoiding
strategies rank first and show reductions in absolute and relative regrets, suggesting their effective-
ness in highly volatile markets. Moreover, in all cases, the risk-avoiding strategy outperforms its
forecasting-based versions, showing its adaptiveness in various cases.

Finally, the advantage of adopting a Top-k decision instead of a Top-1 decision varies in Forecasting-
Only and Risk-Avoiding scenarios. In all cases, the Top-1 version outperforms the Top-5 version in
the Risk-Avoiding scenario, indicating the conflict between the heuristic risk-avoiding strategy and
the uncertainty qualification approach. However, in the Forecasting scenario, the Top-1 and Top-5
strategies vary on different datasets, showing their limitations in making decisions under rapidly
changing markets.

4.3 ABLATION STUDY ON FORECASTING MODELS (RQ2)

The RTS-PnO framework is proposed as a model-agnostic framework to adopt the rapidly changing
time-series forecasting models as baselines seamlessly. This section showcases its compatibility
with three different models: DLinear, TimesNet, and FEDformer, each representing one category
for the time-series forecasting model. The experiment is conducted on two datasets: USD2CNY as
a representative for currency data and Dow Jones as a representative for stock data. The result is
shown in Table@ Based on the results, we can make the following observations:

Table 2: Ablation Study on Forecasting Models

. Forecasting-Only Risk-Avoiding Relative
Fo;\if;selll ng Dataset Top-1 I Top-5 Top-1 I Top-5 RTS-PO RTS-PnO Improvement

regret] R.R.] regret] RR.] [ regret] R.R.] regretl] R.R.] [ regret]l R.R.] | regret] R.R.] | regret(%) R.R.(%)

DLinear USD2CNY | 36.99 5.12 36.73 5.08 35.50 491 38.11 527 35.31 498 34.88 4.81 1.23% 3.50%
Dow Jones | 1103.11 421 112871 4.24 | 1036.65 3.96 107597 4.08 | 1073.30 4.10 | 1042.35 3.98 -0.55% -0.51%

TimesNet USD2CNY | 39.77 5.50 39.46 5.46 36.83 5.09 37.47 5.18 35.99 4.98 33.73 4.66 6.70% 6.87%
Dow Jones | 1157.76 440 1143.82 432 | 1037.71 398 108245 4.11 1042.67 395 | 972.51 3.74 6.70% 5.61%

FEDFormer USD2CNY 36.44 5.04 36.89 5.10 36.28 5.02 36.53 5.05 35.94 4.97 32.32 447 11.23% 11.19%
Dow Jones | 1087.49 4.15 110099 4.19 | 1065.08 4.05 1078.61 4.09 | 104341 3.98 | 1010.96 3.82 3.21% 4.19%

Here bold font indicates the best-performed method and underline font indicates the second best-performed

method. Notice that for the USD2CNY dataset, all regret and R.R. omit the scaler x10~*. For the Dow

Jones dataset, all R.R. omit the scaler x 1072,
First, we observe consistent performance improvement like in the previous section. The RTS-PnO
framework demonstrates significant performance improvements across various forecasting models,
e.g., DLinear, TimesNet, and FEDFormer. For instance, in the USD2CNY dataset, the FEDFormer
model achieved improvements of 11.23% and 11.19% in absolute regret (Abs-R) and relative regret
(Rel-R), respectively, when using RTS-PnO. This indicates that the RTS-PnO framework is not
dependent on a specific model.

Secondly, the selection of the forecasting model also influences the decision quality. For instance,
TimesNet yields the best performance on the Dow Jones dataset. Meanwhile, PatchTST outper-
forms others on USD2CNY datasets. Such an observation further highlights the importance of a
model-agnostic framework. The compatibility of such a framework greatly extends its application
in various real-world applications.

Thirdly, we also observe that the RTS-PtO framework and risk-avoiding paradigm are competitive
approaches across various forecasting models. For instance, Risk-Avoiding with Top-1 decision
yields best on Dow Jones with the DLinear model, while the RTS-PtO framework ranks second in
four out of six cases.

4.4 ABLATION STUDY ON ADAPTIVE UNCERTAINTY CONSTRAINT FOR RTS-PNO (RQ3)

To investigate the effect of the adaptive uncertainty constraint on the decision quality, we conduct the
following ablation study. In this study, we replace the adaptive uncertainty constraint in Section[3.3.2]
with the fixed uncertainty constraint in Section [3.2.3]and Equation[5] The evaluation is conducted
over six datasets, shown in Table 3}

We can make the following observations: First, we can easily observe that the PnO framework with
adaptive uncertainty quantification constantly outperforms the fixed one. Secondly, it is easy to
observe that PnO with fixed uncertainty is sometimes outperformed by its PtO version. Specifically,
PtO ranks second on S&P 500, Dow Jones, and BTC datasets, while PnO with fixed uncertainty
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Table 3: Ablation on Uncertainty Constraint

Dataset USD2CNY USD2JPY S & P 500 Dow Jones BTC ETH |
regret] R.R.] | regretl] R.R.| | regret] R.R.] | regret)] R.R.] | regret] R.R.] | regret] R.R.]
PtO 3574 494 52.11 32,66 | 126.06 394 | 102290 3.92 | 1924.65 3.96 | 138.60 4.96

Fixed-PnO 3466 471 | 4921 31.83 | 129.13  4.02 | 102645 392 | 1939.81 4.02 | 136.66 4.90

Adaptive-PnO | 31.68 438 | 48.77 31.25 | 124.05 390 | 997.52  3.82 | 184326 3.70 | 131.40 4.73
Here bold font indicates the best-performed method and underline font indicates the second best-performed
method. Notice that for the USD2CNY and USD2JPY dataset, all regret and R.R. omit the scaler x10~*.
For the rest datasets, all R.R. omit the scaler x 1072.

ranks second on the rest of the datasets. This is likely because the fixed uncertainty, reflecting the
uncertainty of a well-trained forecasting model, misleads the PnO framework during the training
phase, particularly during the initial stage. This yields an even worse performance than PtO. Both
observations justify the necessity of calibrating the risk vector during the training process.

4.5 ABLATION ON EFFICIENCY (RQ4)

In this section, we empirically evaluate the efficiency aspect of RTS-PnO, which is also deemed
important in the practical aspect (Geng et al.[(2024)). Specifically, we evaluate both the training and
inference efficiency. The experiment is conducted on five datasets: USD2CNY, USD2JPY, BTC,
ETH, and S&P 500. We report the result in mean and variable formats for training and inference per
epoch.

Total Training Time Training Time Per Epoch Inference Time Per Epoch
Forecast t = Forecast == s Forecast t N
RTS-PLO - RTS-PNO — 10 RTS-PLO = I
RTS-PnO ‘ . RTS-PnO I

EEEFE

Time (s)
Time (s)

8 B §

Time (s)

& Iz

USD2CNY  USD2JPY BTC ETH SP500 USD2CNY  USD2JPY BTC ETH SP500 USD2CNY  USD2JPY BTC ETH SP500

(a) Total Training Time (b) Training Time per Epoch (c) Inference Time per Epoch
Figure 2: Efficiency Study on RTS-PtO and RTS-PnO.

For the training aspect, we report both total training time and training time per epoch, shown in
Figures [2(a)] and 2(b)] respectively. We can observe that, compared with forecast methods, RTS-
PnO does not require much additional training time. This suggests that the time required for the
optimization process, compared with that for the training process, is rather neglectable. Additionally,
when combining both Figures [2(a)] and 2(b)] we can observe that RTS-PnO requires much more
training time per epoch, but the total training time is relatively at the same level compared to Forecast
methods and RTS-PnO in certain cases. This suggests that RTS-PnO can converge to optimal with
comparably fewer steps.

For the inference aspect, we can observe from Figure that RTS-PnO and RTS-PtO require
much more time than Forecast methods. As these two frameworks require solving the optimization
process during the inference time, it suggests that the optimization process dramatically slows down
the inference speed. This is quite different from the previous observation that the time required for
the optimization phase can be neglected compared to training. Such an observation calls for quicker
optimization approaches, such as model-based optimization (Sun et al.| (2020)).

5 CONCLUSION

In this paper, we study the fund allocation problem extended over the time dimension. Specifically,
the target is to acquire a certain amount of asset within a period, and the price of the unit asset
varies from time to time. We propose two solutions: (i) a two-stage solution RTS-PtO with fixed
uncertainty constraint, and (ii) an end-to-end solution RTS-PnO with adaptive uncertainty constraint.
Both constraints are introduced to combine the hard-to-predict nature of time series and improve the
decision quality. The evaluation is conducted over eight datasets from three categories of financial
data. The proposed methods yield SOTA performance over the majority of the cases.
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A EXPERIMENTAL SETUP

A.1 BACKBONES

Here, we further detail the setup of these time series forecasting models serving as backbones in
this paper. We noticed that some of the models (TimesNet and FEDformer) make use of timestamp
information by incorporating special temporal embeddings, whereas other models choose not to. We
remove the time stamp information from all models to ensure fair comparisons.

* PatchTST (Nie et al.[(2023)): An encoder-only Transformer that operates on patches instead of
individual time steps to quadratically reduce computational costs and model patch-wise depen-
dencies.

* DLinear (Zeng et al.| (2023)): A fully-linear model with a decomposer to separate seasonal and
trend signals. The two signals are processed by separate linear transformations and added before
output.

* TimesNet (Wu et al.| (2023)): A modern temporal convolutional architecture that reshapes the 1D
series into 2D matrices by salient periodicities in each model block to jointly capture intra-period
and inter-period dependencies.

* FEDformer (Zhou et al.|(2022)): An encoder-decoder Transformer which computes attention in
the Fourier space after filtering.

A.2 DATASETS

Below we describe the details of each datasets.

* Currency: The Currency datasets, USD2CNY, USD2JPY, AUD2USD and NZD2USD, contain 10-
minute currency between different currency pairs. The date of this dataset ranges from 2023/07/10
to 2024/07/08. We removed the intervals where the market was closed.

* Stock (Prakashl (2024)): The Stock datasets, S&P 500 and Dow Jowes, contain daily prices from
1990/01/03 to 2024/2/16. It only contains workdays within this period. We use the Open market
price as default.

* Cryptos (Gendotti| (2024)): The original Cryptos data is sampled at a minute frequency. We
observed that the series remains relatively stable within each hour, and the first half of the data
exhibits minimal variation. Therefore, we retain only the second half of the data and downsample
it to an hourly frequency. We use the Open market price as default. Eventually, the ETH dataset
contains hourly prices from 2020/07/18 to 2024/07/28, while the BTC dataset contains hourly
prices from 2019/11/27 to 2024/07/29.

Table 4: Benchmark Statistics

Category Dataset #Times Max Min Mean Median
USD2CNY 7.0905 7.3494 7.2267 7.2333
USD2JPY 1.3740 1.6195 1.4949 1.4922
Currency | USD2SGD | 22968 | 1.3159 1.3757 1.3484 1.3485
AUD2USD 0.6274 0.6895 0.6559 0.6562
NZD2USD 0.5774 0.6411 0.6066 0.6087
Stock S&P 500 8597 29546  5029.73  1596.80  1270.20
Dow Jones 2365.10 38797.90 13663.80 10846.30
Cryptos BTC 40932 | 4206.86 7370536 32269.79  29352.15
ETH 35301 | 233.72  4853.69 212629  1886.80

A.3 IMPLEMENTATION DETAILS

In this section, we provide the implementation details for all offline experiments. Our implemen-
tation (Author] (s)) is based on the PyTorch framework. Adam Optimizer is adopted for all setups.
We select the learning ratio from {1e-3, 3e-4, le-4, 3e-5, le-5}. We adopt Gurobi (Llc.|(2019)) as
the solver for optimization problems and borrow the implementation of SPO+ loss (Elmachtoub &
Grigas| (2022)) from the PyEPO (Tang & Khalil| (2024)) library. All experiments in this section are
run on an Nvidia RTX 4090D (24GB) GPU with 8 Intel (R) Xeon (R) Platinum 8481C and 40GB
of memory. Our experiments are available here (Author](s)).
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B ABLATION STUDY

B.1 INVESTIGATION IN RTS-PNO FROM FORECASTING PERFORMANCE (RQ5)

In this section, we evaluate the forecasting performance of the forecasting model trained under the
classic prediction paradigm and the proposed RTS-PnO framework. Note that the two-stage solution
RTS-PtO has identical forecasting performance compared with the basic forecasting model, as it
trains the same forecasting model during the prediction step, and the optimization step does not
involve any update of the learned parameters. We report the performance on all three datasets. Both
MSE and MAE are adopted to evaluate the forecasting performance, following the custom of time
series forecasting (Zeng et al.| (2023)); Nie et al.|(2023));|[Zhou et al.|(2022)); [Wu et al.[(2023))).

Table 5: Experiment on Forecasting Metrics
Prediction RTS-PnO
MSE MAE | MSE MAE
USD2CNY | 0.0049 0.0397 | 0.0053 0.0430
USD2JPY | 0.0383 0.1263 | 0.1201 0.2796

Category Dataset

Currency | AUD2USD | 0.0277 0.1220 | 0.0350 0.1439
NZD2USD | 0.0233 0.1072 | 0.0327 0.1334

Stock S&P 500 | 0.1533 0.2744 | 0.5567 0.6194
Dow Jones | 0.1184 0.2354 | 0.3552 0.4815

. BTC 0.0197 0.0962 | 0.0953 0.2321
Criptos h00  NArno

ETH 0.0213 0.1003 | 0.1297 0.2608
Here bold font indicates the best-performed method and underline font indicates the second best-performed
method.
Based on the result in Table[5] we can easily witness a drop in both MAE and MSE after employing
RTS-PnO. Such an observation aligns with previous works (Mandi et al.|(2024); |Geng et al.|(2024))
that the PnO framework improves the decision quality at the cost of prediction accuracy. It also
reveals the misalignment between decision and prediction tasks.
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