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Introduction

Multi-scenario Recommendation (MSR)

Scenario A, B, C

Can be accessed simultaneously —
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@ Multi-scenario recommendation (MSR) has become a core component of various
online platforms due to its excellent advantages in mitigating data sparsity and
reducing maintenance costs [Sheng et al., 2021].

@ Instead of training a model for each scenario, the MSR aims to effectively utilize user
historical feedback in multiple scenarios through a unified model.
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MSR Model Architecture

N | @ Most existing MSR models follow a

— %,.; ------- ] vt shared-specific architecture [Ma et al., 2018].
senape - "™ @ The scenario-shared layers serve instances of all
| — scenarios and output a shared representation to
it capture commonalities between scenarios.
i — @ The scenario-specific layers consider the
| DU differences between different scenarios and
T [ Hﬂi‘ﬂ-ﬂ generate specific predictions from the shared

representation in the corresponding scenario.
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Existing Problems

@ Existing MSR models focus more on implicitly extracting and exploiting valuable
information across scenarios from the architectural level.

@ Problem 1: To improve the effectiveness of this extraction process, they need to
successively introduce different customized components in the architecture, but this
also continuously increases the complexity of the MSR models and training overhead.

@ Problem 2: The effectiveness of each component for extracting implicit information
depends heavily on the specific MSR model deployed, limiting their reusability in a
broader range of MSR models.
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Motivation (1/2)

@ To address these problems, we argue that we can switch perspectives from implicit
information extraction at the architecture level to explicit extraction at the data level. A
potential solution is to directly share valuable instances across scenarios to enhance
model training for all scenarios in MSR.

@ The idea behind it is that some instances in MSR may carry more required critical
information and are suitable as hubs for information propagation, such as instances
with similar users or items.

@ For Problem 1: Since only a simple reuse operation of instances is required and the
operation is model-free, this solution can be integrated with existing MSR models
without significantly increasing training overhead.

@ For Problem 2: Selected shared instances are easy to save and reuse.
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Motivation (2/2)

@ We conduct a preliminary experiment to verify
the feasibility of this potential solution.

@ We implement the MSR architecture using two

- —— = — backbone models, treating user-item interactions
il ] wal | || . :

il RN N across all scenarios as shared instances to

“‘},. m_ !_ “}___-___I__ obtain model variants.

o _.] @ Asshownin the figure, the variant with full

! g : = el - = instance sharing (with the suffix -S’ in the
R =0 i legend) outperforms the original backbone based

on implicit information extraction.

@ This motivates us to develop a training framework
to better select shared instances in MSR.
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Multi-scenario Learning

@ For K scenarios S = {s',--- , sk}, the multi-scenario training instances can denote
D = {(xk, yk, sK)}<_ ., where s is the k-th scenario, x¥ € X is the i-th instance’s
feature vector in k-th scenario, and y,-"‘ € {0,1} is corresponding label. Multi-scenario
learning aims to train a model using the above training instance set, consisting of
shared and specific components,

Vit = (x| 0, {0s}), (1)
where f(-) is the mapping function, and # and {f .} are the scenario-shared and
scenario-specific parameters, respectively.

@ The cross-entropy function is usually used to optimize the model, where |s¥| denotes
the number of instances in scenario s* and /(-) is the cross-entropy loss.
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Shared Instance Selection Problem for MSR (1/3)

@ During the training process, training instances D are typically organized into n

mini-batches containing instances from multiple scenarios, B = [B1, Bz, - - , By,
where the j-th mini-batch with m instances is denoted as,

Bj = {(X;;, ¥ S*) 14, (3)
where » € {1,2,--- , K} represents the scenario corresponding to the /-th instance in

this mini-batch. In the traditional MSR model, each instance in B; can only affect the
scenario-shared parameters ¢ and scenario-specific parameters .« to which it
belongs and cannot act on other scenario-specific parameters.
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Formiulation

Shared Instance Selection Problem for MSR (2/3)

@ Hence, the shared instance selection problem in MSR can be defined as learning the
shared instance mask operation G to select shared instances beneficial for all

scenarios from B,
BoG — B =[B], B}, B (4)

where G € {0,1}™", & denotes element-wise multiplication, and B" is a shared
instance set obtained by removing non-shared instances in each batch, and each
instance in B" can be regarded as a scenario-shared instance. This can be directly
done by passing these instances through all scenario-specific networks
simultaneously and obtaining a set of losses associated with their labels,

Bshl K

2 S Ik 9K, (5)

1 k'=1
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Shared Instance Selection Problem for MSR (3/3)

@ Finally, we can formulate our problem as follows,

: sh shymsh
rgﬂgﬁ[ﬂ\ﬂ ) + L77(B™). (6)

where © = {0, {64}/, } denotes the network parameters, and D \ BS" represents
the part of the training instances that do not belong to the multi-scenario shared

instances, i.e., they are still scenario-specific instances that follow the traditional
MBR training.
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Architecture (1/2)
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The SSIM framework includes two phases: search and reuse, and two key components:
the backbone MSR model and the adaptive selection network.
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Architecture (2/2)
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@ In the search phase, SSIM will use a backbone MSR model as a synergy to train the
adaptive selection network to select reasonable shared instances.

@ In the reuse phase, SSIM will train a target MSR model based on the selection
results of the above well-trained adaptive selection network.

Liv et al., (52U & Tencent & McGill & SZTU) SalM KDD 2025



Search Phase (1/7)

@ The search phase aims to obtain an adaptive selection network that can efficiently
select a set of scenario-shared instances from all scenario instances.

@ To guide the adaptive selection network to more accurately identify those shared
instances beneficial to MSR training, we need to introduce a backbone MSR model
as a practitioner of the selection results of the adaptive selection network.

@ The adaptive selection network is based on an end-to-end training form. It can
continuously adjust its selection strategy according to the optimization process of the
backbone MSR model.
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Search Phase (2/7)

@ To better represent and utilize features, given a current mini-batch B;, we first encode
each instance x7; into a low-dimensional and dense real-value vector via an
embedding layer with an embedding table,

E}‘:j =E x x}fj, (7)

where E € # denotes the embedding table shared across scenarios.
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Search Phase (3/7)

Aduptive Selecton Netwark

@ After obtaining each instance’s feature embedding, we expect a
selection network to search for instances from B; that benefit the
backbone MSR model in learning in all scenarios.

@ To better highlight the characteristics of each scenario, we propose an
adaptive selection network with a hyper-network learning structure to

make more reasonable selections of instances within the scenario.
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Search Phase (4/7)

@ Specifically, we first input the feature embedding e"‘ into a shared feedforward neural
network (FNN) for shared feature extraction, where the [-th multi-layer perception
(MLP) layer can be expressed as follows,

hi=o (WhiT'+b'), 1e[1.L] (8)
where W' and b’ denote the learnable weight matric and bias vector, o(-) denotes the

ReLu activation function, and L denotes the number of multilayer perception layers.
Note that in the first MLP layer, h? = eX.
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Search Phase (5/7)

@ Then, to combine the characteristics of each scenario, we introduced a
scenario-specific feedforward neural network component for each scenario based on
the idea of the hyper-network, where each instance will obtain the final output
probability through different components according to its own scenario identity.

@ For example, assuming that the current instance xj‘ ; belongs to the k-th scenario, the
calculation process is,

pi = o (WKL +b%)  (xf;, s¥), (9)

where p; ; denotes the shareability probability of the /-th instance in the j-th batch,
a(-) denotes the Sigmoid activation function, WX and b* denote the learnable
scenario-specific weight matric and bias vector for k-th scenario.
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Search Phase (6/7)

@ After obtaining p; i, since we need to explicitly reuse a set of shared instances in all
scenarios when training the backbone MSR model later, a discretization operation
must be performed to determine each instance’s selection.

@ We use a straight-through estimator operation S(-) [Courbariaux et al., 2016] to
implement this operation to maintain backward differentiability.

gj.i = S(relu(pj,; — €)), (10)

where ¢ is a learnable threshold, 9j.i € {0,1} is a shared instance mask for each
instance x" in the current batch B; is to decide whether to share this instance in
multi- scenann learning or not, and g;i =1 and g;; = 0 represent “share” and
“unshare”, respectively.
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Search Phase (7/7)

@ Assuming that the selection results of all instances of each scenario after the
adaptive selection network are represented as {g} e gf' }, we can merge them to
obtain a final shared instance selection result for current mini-batch B;.

Gi=g +9°+ - +g° (11)

@ Based on the selection result of Eq.(11), we can classify the instances in B; into a
scenario-shared subset B?" and a scenario-specific subset B; \ B". We can then
arbitrarily choose a backbone MSR model as the executor to practice on each batch

of selected results.
B/={Bs".B)\B"}
-

MSR MSR’. (12)
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Optimization (1/2)

@ First, to guide the adaptive selection network in maximizing the probability of
selecting valuable shareable instances and minimizing the probability of useless
instances, we need to force the backbone MSR model after integrating shared
instances to optimize towards better multi-scenario recommendation performance.

L7 = £(D\ BS") + £5"(B*). (13)

Note that the first and second terms in Eq. (13) are calculated by Eq. (2) and Eq. (5),
respectively.
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Optimization (2/2)

@ Second, to more flexibly trade off the number of shared instances and MSR
performance, we introduce a Kullback-Leibler (KL) divergence constraint between the
shared instance mask G and the full selection mask (i.e., a vector with all values 1).

LMK = Dy (1/|G). (14)
@ Finally, combining Eq.(13) and Eq.(14), we get the final training objective becomes,

rgirg Lssm = L™ + AL mask (15)

where A is the control weight.
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Reuse Phase (1/2)

) = .-\dapt'ive Selection
: Network

-
Reusability of Shared Instances

Reuse Phase

@ After completing the search phase, our SSIM can obtain a well-trained adaptive

selection network.
@ In the reuse phase, we can construct a “new training set” that includes the shared

instances selected by this adaptive selection network and the remaining
scenario-specific instances to train various future MSR models.

KDD 2025
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Reuse Phase (2/2)

@ Assume that the backbone MSR model that needs to be newly trained is MSR".

@ To obtain an optimal ratio to control the proportion of shared instances, we first sort
all scenario instances according to the output probability of the adaptive selection
network. Then, we use an automatic grid search to obtain the ratio that makes MSR”
achieve the best results on the validation set.

@ After determining the optimal selection ratio, assuming that the current shared

. . —=sh . . .
instance is represented as B”, we constrain MSR* to achieve an optimal
multi-scenario recommendation performance with the help of these shared instances.

ngnﬂz(mES“} + £sh(B). (16)
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Datasets
Table: Statistics of the processed datasets.
AICCP AlMama
Dataset 57 5 53 ALT 57 55 53 5 ALL
Train #impr&ss 14,296,532 | 286913 | 23,487,225 | 38,070,670 | 964,106 | 711,366 | 1,659,630 | 13.7/42020 | 17.077122
ficlick /1542 12,600 895 .607 1.479,749 54,889 41,050 91.422 49237 936,598
Validation #imprﬂss 1,588.839 31,960 2,608,436 4 229 235 106,702 | /9157 183.839 1.528.296 1.897.994
ficlick 63,241 1323 99,943 164 507 6,040 4. 598 10,193 82,700 103,531
Test #impr&ss 16,351,580 | 321,024 | 26,344,010 | 43,016 614 | 376,175 | 26/.811 616,552 4,956,251 6,216,789
ficlick 656.280 14,099 1,003,068 1673447 20614 14,740 32,579 257994 325927
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Baselines Methods and Backbone Methods

@ To assess the generalization ability of all methods, we combined each method with
three mainstream backbone models: DNN, DeepFM [Guo et al., 2017],
DCN [Wang et al., 2017], STAR [Sheng et al., 2021], and HMoE [Li et al., 2020],

@ We compare our SSIM with the MSR baseline, including three MSR models with
representative architectures as strong baselines, i.e., STAR [Sheng et al., 2021],
HMoE [Li et al., 2020], and DFFM [Guo et al., 2023].

@ We compare our SSIM with the instance utilization baseline to verify the
effectiveness of leveraging sharable instances in multi-scenario learning: the first is
traditional modeling that directly aggregates all scenario instances (ST-Backbone),
the second is fine-tuning each scenario using scenario-specific instances based on
ST-Backbone (Finetune), the third is modeling based on original shared-specific
architecture (MT-Backbone), and the last one is modeling based on full instance
sharing (MT-Backbone-S).
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Implementation Details (1/2)

@ For general hyperparameters, we set the embedding dimension and batch size as 16
and 4096, respectively. For the MLP layer in the backbone models, we use a
three-layer fully connected network of size [1024, 512, 256]. We use Adam optimizer
and Xavier initialization in the experiments. We select the optimal learning ratio from
{1e-3, 3e-4, 1e-4, 3e-5, 1e-5} and the /> regularization from {3e-5, 1e-5, 3e-6, 1e-6,
3e-7, 1e-7}.

@ For the adaptive selection network in SSIM, we use the three-layer fully connected
network mentioned above as the shared feedforward neural network (FNN). The
scenario-specific FNN uses a single-layer fully connected network, with its output
dimension set to 1. Furthermore, we select the optimal control weight A from {0.3,
0.4,05,0.6,0.7,0.8, 0.9, 1}.
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Implementation Details (2/2)

@ For other baseline methods, we refer to the open-source repository of
DFFM [Guo et al., 2023], and due to the lack of available open-source repositories for
the STAR [Sheng et al., 2021] and HMoE [Li et al., 2020], we re-implement them
based on the details provided by the original paper.

@ Note that all baselines are tuned for optimal parameter settings within the same
range of hyperparameters.

@ Following the setup of existing works [Wang et al., 2022, Lin et al., 2022], we apply
the two primary evaluation metrics for deep recommender systems: area under the
ROC curve (AUC) and cross-entropy (log loss).
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RQ1: Performance Comparison (1/2)

AlICCP AliMama
Mathod ROCT Cogioss] AOCT [ogloss]
ST-Backbone | 6246 6023  B220 .1661 .1794 .1600 | G184 6144 6245 6323 2011 2023 1957 .1996
_ Finetune 6250 6025 6222 1658 1794 1508 | £197 6155 6245 B328 2013 2018 1965 1931
Z | MT-Backbone | 6250 5910 6221 .1652 .1797 .1604 | 6195 6131 6232 6323 2006 2019 .1960 .1919
MT-Backbone-S | 6261 .6024 6234 1656 .1789 .1506 | 6203 6161 6264 6337 2008 2019 .1953 1924
SSIM 6275 6031° 6247 1659 .1795 .1595 | .6236° .6199° .6282° .6352° .1999° .2009° .1947° .1919
ST-Backbone | 6248 .B024 6220 .1662 .1800 .1601 | 6202 .B158 6242 6303 2010 2020 .1957 .1933
= Finetune 6249 8027 6230 1650 1796 .1507 | 6205 6160 6245 B304 2006 2017 1967 1981
§ MT-Backbone | 6252 5831 6227 .1648 1837 .1585 | 6202 6152 6255 6323 2001 2011 1946 1928
& | MT-Backbone-S | 6266 6024 6237 1653 .1791 .1504 | 6204 6158 6258 6330 2000 2010 .1944 .1919
SSIM 6279° 6031 6254 1649 .17B5° .1591 | .6234° .6199° .6282° .6352° .1996 .2007° .1943 .1921
ST-Backbone | 6251 6007 6223 1651 1784 1501 | 6207 6161 6245 G306 2007 2017 .1955 1931
- Finetune 6257 G008 6225 1650 1787 .1590 | 6209 6169 6259 6319 2003 2015 1949 1935
Q | MT-Backbone | 6254 5897 6228 1651 .1797 .1599 | 6202 6152 6254 6324 2000 2011 1946 .1928
MT-Backbone-S | 6265 6020 6236 .1654 1788 .1502 | 6209 6169 6264 6332 2004 2016 .1952 1923
SSIM 6281* 6029° 6249 .1649 .1782 .1593 | .6239° .6203° .6283° .6351° .1994* .2003* .1942 .1921
STAR 6240 GRBO 6191 1691 1817 .1604 | B152 B112 6216 .G2R3 2048 2096 .1985 .1933
a HMoE 6220 5952 G182 1665 1809 .1601 | 6164 6099 6232 6279 2006 2022 1949 1923
Q DFFM 6251 8022 6220 .1657 .1795 .1508 | 6216 6157 6245 6319 2003 2013 1947 .1924
STAR+SSIM | .6277° 5975 .6260° .1736 .3130 .1608 | 6223 G189 6272 .6352° 2141 2135 2024 .1916
HMoE+SSIM | 6262 6025 6232 .1657 .1796 .1596 | .6244° .6205° .6281° 6350 .1996° .2005° .1945 .1919

Liv et al., (52U & Tencent & McGill & SZTU) SalM KDD 2025



RQ1: Performance Comparison (2/2)

@ Unlike other instance utilization baseline methods, our SSIM consistently achieves
significant performance improvements in most cases. This demonstrates that our
SSIM can select a more reasonable set of shared instances.

@ We can observe that using our SSIM on the basic backbone model achieves better
results in multi-scenario recommendation than the baseline methods that focus on
architectural design to extract critical information implicitly.
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RQ2: Ablation Study (1/2)

AlCCP AliMama

Modal Methods AT Cogose] AUCT oglose]

SSIM-R | 6252 6013 .6223 .1660 .1785 .1500 | 6203 6165 .6232 G323 2000 .2021 .1960 .1919
SSIM-P | 6251 5822 @210 .1776 .1801 .1674 | 6193 6135 6225 5331 2363 2345 2241 2166
DNM | SSIM-NK | .6250 6010 .6224 .1650 .1784 .1591 | 6188 6147 6239 5321 2005 .2023 .1958 .1923
SSIM-ND | 6264 6020 6229 1658 .1797 .1601 | 6200 .6158 .6238 6240 2006 2012 .1951 .14931
S5IM BZ75 601 6247 1659 1795 1595 | 6236 .6199 .6282 6352 1999 2009 .1947 .1919
SSIM-R | 6251 6011 6228 .1608 .1/96 .1097 | 6200 .6148B .6234 bBa2h 2000 2017 .1953 .1924
SSIM-P | 6248 5924 6226 .1804 1901 .1705 | 6197 6136 .6238 6328 2388 .2383 .2263 .2199
DeepFM | SSIM-NK | 6260 6015 6226 1650 .1788 .1588 | 5197 6145 6249 06325 .2001 2016 .1949 .1919
SSIM-ND | 6266 6020 .6244 1650 .1789 .1588 | 6146 .6155 6241 6321 2008 2040 .1967 .1925
S5IM G279 603 6254 1649 1785 1591 | 5234 .6199 .6282 6352 1996 .2007 .1943 1921
SS5IM-R | 6252 6010 .6222 .1648 .1/85 .1588 | 6206 .614B 6246 53423 2000 .2010 .1950 .1923
SSIM-P | 6208 5750 .&212 .1800 .1867 .1705 | 6189 6123 6230 B30T 2206 .2264 .2212 .2164
DCH | SSIM-NK | .6255 6006 .6225 .1650 .1785 .1592 | 6205 .6158 .6253 5330 .2000 .2010 .1943 .1924
SSIM-ND | 6263 6022 6236 .1651 .1787 .1589 | 6204 6132 6256 6337 2014 2037 .1959 .1924
SSIM G281 .6029 .6249 .1649 .1782 .1593 | 6239 .6203 .6283 6351 .1994 .2003 .1942 .1921

We conduct an ablation experiment by replacing it with two sampling methods: random
selection (‘SSIM-R’) and positive instance selection (‘SSIM-P’). Then, we evaluate two
variants that remove the scenario-specific hyper-network structure from the adaptive
selection network (‘SSIM-ND’) and remove the KL constraint in optimization (‘SSIM-NK").
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RQ2: Ablation Study (2/2)

@ We can observe that the adaptive selection network incorporated into our framework
enhances the performance of the MSR model more effectively than the general
instance sampling method. This means that the adaptive selection network adopted
can carefully evaluate the impact on MSR learning when each instance becomes a
shared instance.

@ We can also observe that removing the hyper-network structure and the KL
divergence constraint negatively impacts the performance of our framework, as
expected, which demonstrates that all the critical steps in our SSIM are necessary.
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RQ3: Reusability Analysis (1/2)

AlCCP AliMama

AUCT Lagloss] AUCT Logloss]
DNN G275 6031 6247 .1659 .1795 .1595 | 6236 H5199 6282 .6352 .1999 .2009 .1947 .1919
DNN DeapFM | 6276 .6029 .6252 .1653 .1787 .1591 | 6234 6198 6281 .6352 .1999 2010 .1947 .1920

DCN G272 6027 .6243 .1653 .1787 .1593 | 6237 5200 6282 .6352 .1999 20089 .1947 .1920
DeepFM | 6279 .6031 6254 .1649 .1785 .1591 | .6234 6199 6282 .6352 .1996 2007 .1943 .1921
DeapFM DNN G281 6023 6253 .1650 .1787 .15497 | 6229 HB196 6277 .6352 .1997 2006 .1944 1922
DCN 6280 6028 .6255 .1649 .1784 .1593 | 6234 HB196 6280 .6353 .1996 2008 .1943 .1921
DCN B281 6029 6249 .1649 .1782 .1593 | 6239 5203 6283 6351 .1994 2003 .1942 1391
DCN DNN 6275 6028 .6252 1651 .1785 .1594 | 6239 6202 6284 .6352 .1994 2003 .1942 .1921
DeapFM | 6281 .6031 6251 .1650 1785 .1592 | 6236 6198 6284 .6353 .1998 2008 .1946 .191%

DN G276 .6022 6256 .1705 .2963 .1608 | 6237 6195 6281 .6353 .2138 2127 2020 .1916
STAR | DeepFM | 6273 .6013 .6259 .1722 3284 .1601 | 6226 6195 6278 .6352 .2109 2105 .2007 .1916
DCN G270 .6002 .6259 .1718 .3193 .1603 | 6231 6201 6283 .6349 .2160 .2147 2034 .1916
DNN G262 .6032 .6235 .1656 .1790 .1594 | 6244 GB202 6279 .6350 .1996 2006 .1946 .1919
HMoE | DeepFM | 6255 .6025 .6230 .1654 .1790 .1592 | 6241 6202 6279 .6351 .1997 2006 .1946 .1920
DCN G262 .6032 .6234 .1654 .1789 .1593 | .6244 5204 G£279 .6349 .1996 2006 .1945 .1919

Target Source

To verify the reusable properties of our SSIM, we first use SSIM with different backbone
models to obtain shared instance sets, respectively, and then directly use the obtained
shared sets and scenario-specific instance sets to train MSR models with different
backbones.
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RQ3: Reusability Analysis (2/2)

@ Good reusability allows a selected set of shared instances to be saved and used
directly to train various MSR models, which also prevents these MSR models from
repeatedly performing the search phase.

@ We can find that no matter the source backbone, the shared subset obtained by our
SSIM can maintain good performance in MSR models of different backbones. This
verifies the effectiveness of our SSIM in identifying shared instances with high
reusability and makes it attractive for deployment in industrial MSR.
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RQ4: In-depth Analysis (1/4)

@ We conduct an analysis experiment on AliCCP to

o = —_ better understand the impact of introducing shared
R [y instances in different scenarios.
o0 i i '[ i i ]I II I[ i i i @ We control the ratio of shared instances obtained by
30610 I I I I 'I,' '_I I_,I our SSIM and set it to {U%; 10%,20%, - - - 100%}
0.600 l» EEEE @ We can find that as the ratio of shared instances
0590 'x- 3 ’I I I I I I I increases, the performance of niche scenarios (S2)
e 3 20 30 0 = & 70 % 90 200 will be significantly improved in the early stage and

Rt o

then maintained at a similar level.
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RQ4: In-depth Analysis (2/4)

o . @ Intuitively, instances with the same (or similar) user or
to—— " the same (or similar) item are more likely to carry
some scenario consensus information, i.e., have
I_ I_ I_ I I more shared features. We conducted an analysis
I I I I B experiment to verify this guess.
I I I I I @ We can observe that no matter the value of the
shared instance ratio, the shared feature ratio
NN BNES EmEn BeEn W corresponding to the shared instance set is high (e.g.,
Sharedinstance Ratior) 80% for AlICCP and 60% for AliMama).

Shared Features Ratio
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RQ4: In-depth Analysis (3/4)

Sl:Shared S2Shared . S3:Shared: S4:Shared Sl:Spedfic  S2:Specific - S3:5pecific » S4: Spedfic

@ Taking Alimama as an example, after our SSIM is well-trained, we can get the
embeddings of scenario-shared and scenario-specific instances, respectively, and
use t-SNE for dimension reduction visualization. Where, with the results of
scenario-shared and scenario-specific instances on the left and right.

@ As expected, we find that the representations of scenario-specific instances have a

more discriminative state than shared instances.
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RQ4: In-depth Analysis (4/4)
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@ We conduct experiments on AliCCP using three backbone models to study the
sensitivity of two key hyperparameters: (i) learning rate and (ii) /> regularization
coefficient.

@ Based on the results in the figure, we can find that the performance change trends of
our SSIM for the three scenarios are similar under different hyperparameter values.
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Experiments

RQS5: Online Experiments

Online Service
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@ We deploy our SSIM in the MSR scenario of Tencent FiT, one of the large-scale
online financial platforms in China, to further evaluate its performance. The specific
deployment process is shown in the figure.

@ Then, we adopted two core metrics commonly used in the platform (i.e., click-through
rate (CTR) and subscription amount (SA)) as evaluation indicators.

@ As shown in the table, our SSIM consistently achieves significant gains compared to
the deployed baseline model in all scenarios.

L sers

Metrics | Scenariol Scenario2 Scenario3 Scenariod
CTR ‘ 3.15% 2.08% 0.93% 0.92%

SA 3.07% 1.92% 7.71% 14.81%
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Conclusions

@ We propose an explicit multi-scenario shared instance modeling (SSIM) framework
based on hyper-network learning to improve MSR performance by adaptively
selecting useful shareable subsets from training instances.

@ Our SSIM optimizes an adaptive selection network with a hyper-network structure to
generate sharable subsets from all scenario instances in the search phase. These
shareable subsets can be used directly to train future multi-scenario recommendation
models in the reuse phase.

@ Finally, we evaluate SSIM and demonstrate its effectiveness through experiments on
two public multi-scenario benchmarks and an online A/B test.
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Thank You!
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