
A Survey on Test-Time Scaling in
Large Language Models: What, How,

Where, and How Well?

Presenter: Fuyuan Lyu & Qiyuan Zhang

Page: https://testtimescaling.github.io/

The Age of Pretraining (2020-2024)

[1] Scaling Laws for Neural Language Models

[2] Fu’s Blog (Apr 2024) Ilya’s Speech (Dec 2024)

Pretraining scaling has gradually slowed

[2] Llama 3 Opens the Second Chapter of the Game of Scale

Pretraining Test-time

Increasing test-time compute yields
consistent performance improvements

Increasing pretraining-time compute yields
consistent performance improvements

Test-time Scaling

Test-time scaling (also referred to as inference scaling, test-time compute)
progressively elicits the model’s intelligence in the test-time phase.

Comparison of Scaling Paradigms in Pre-training and Test-time Phases

Situation

• Researchers: When faced with
overwhelming and complex literature, how
should we cope?

• Practitioners: where should we focus our
efforts for innovation?

• Both: How should we discuss them?

Survey Overview

• A Unified, Multi-Dimensional Taxonomy. (For Researchers and Practitioners)
We propose a four-axis taxonomy—what to scale, how to scale, where to scale, and

how well to scale—that supports structured classification, comparison, and extensibility for TTS
methods.

• Systematical Literature Organization and Pragmatic Analysis. (For Practitioners)
Using our taxonomy, we survey the TTS landscape, analyze representative methods, and

present guidelines for research application and deployment.

• Challenges, Insights, and Forward Directions. (For Researchers)
Building on our organized perspective, we uncover critical challenges—ranging from

advancing scaling to clarifying essence—and outline promising research directions that could shape
future progress. Our unified framework facilitates the mapping of these open questions to concrete
dimensions of TTS, enabling more targeted and impactful advancements.

Dissecting TTS into 4 Key Orthogonal Dimensions

• What to scale

• How to scale

• Where to scale

• How well to scale

refers to the specific form of TTS that is scaled to enhance
an LLM’s performance during inference.

TTS depicts how different TTSs are implemented.

covers the tasks and datasets where these TTSs are applied.

refers to both the metrics of evaluating TTS and the
optimization directions.

Taxonomy Credit to Yufei Wang

What to Scale

• When applying TTS, researchers typically choose a specific empirical hypothesis.

e.g., longer CoT, multiple sampling, advanced search ...

• Parallel Scaling

• Sequential Scaling

• Hybrid Scaling

• Internal Scaling

What to Scale

Generating multiple outputs in parallel.

Updating intermediate states iteratively.

Balancing exploration and exploitation.

Determining autonomously how much
computation to allocate.

Chapter Credit to Qiyuan Zhang

Parallel Scaling

Normal: LLMs generate a single response per query.

Parallel scaling
- generates multiple outputs in parallel and then

aggregates them into a final answer.
- e.g. Best-of-N, Majority-Voting

Sequential Scaling

Normal: LLMs generate a single response per query.

Parallel scaling
- generates multiple outputs in parallel and then

aggregates them into a final answer.
- e.g. Best-of-N, Majority-Voting

Sequential scaling
- involves explicitly directing later computations based on

intermediate steps.
- e.g. Self-Refine, CoT

Hybrid Scaling

Normal: LLMs generate a single response per query.

Parallel scaling
- generates multiple outputs in parallel and then

aggregates them into a final answer.
- e.g. Best-of-N, Majority-Voting

Sequential scaling
- involves explicitly directing later computations based on

intermediate steps.
- e.g. Self-Refine, CoT

Hybrid scaling
- exploits the complementary benefits of parallel and sequential scaling.
- e.g. ToT, FoT, AoT, MCTS

Internal Scaling

Normal: LLMs generate a single response per query.

Parallel scaling
- generates multiple outputs in parallel and then

aggregates them into a final answer.
- e.g. Best-of-N, Majority-Voting

Sequential scaling
- involves explicitly directing later computations based on

intermediate steps.
- e.g. Self-Refine, CoT

Hybrid scaling
- exploits the complementary benefits of parallel and sequential scaling.
- e.g. ToT, FoT, AoT, MCTS

Internal scaling
- Internalize the scaling process into a model and autonomously determine how

much computation to allocate
- e.g. R1, o1/o3

What to Scale - Taxonomy

How to Scale

Inference Strategies

Tuning Strategies

How to Scale

• Supervised Finetuning

• Reinforcement Learning

• Stimulation

• Verification

• Search

• Aggregation

Inference-based Approaches

Inference-based approaches dynamically adjust computation during deployment.

This paradigm includes 4 essential components:

(i) Stimulation encourages the model to generate longer or
multiple candidate outputs;

(ii) Verification filters or scores outputs based on correctness or
other criteria;

(iii) Search systematically explores the sample space;
(iv) Aggregation consolidates multiple outputs into the final

output.

Chapter Credit to Fuyuan Lyu

Inference-based Approaches: Stimulation
Stimulation encourages the model to allocate more computation to thinking.

Prompt Strategy

Decode Strategy

Latent Strategy

Self-Repetition Strategy

This behavior requires the backbone LLM’s ability to follow instructions.

This approach modifies the decoding process to encourage LLM to generate
longer, more detailed samples adaptively.

It encourages deeper or recurrent thinking within the hidden representations
themselves through continuous internal states.

It generates multiple samples instead of individual ones.

Mixture-of-Model Strategy

It requires gathering the “wisdom of the crowd”.

Summary of Certain Stimulation Techniques

Inference-based Approaches: Verification
The verification process plays an important role in the test-time scaling

• directly selects the output sample among various ones (Parallel Scaling);
• guides the stimulation process and determines when to stop (Sequential Scaling);
• serves as the criteria in the search process (Hybrid Scaling);
• determines what sample to aggregate and how to aggregate them, e.g., weights.

Outcome Verification.

Process Verification.

plays a crucial role in ensuring the correctness and consistency of generated outputs.

verifies the sample outcomes and the process of obtaining such an outcome.

Summary of Certain Verification Techniques

Inference-based Approaches: Search

• Beam Search and Variants

Employing search algorithms during inference provides a structured way to explore the
solution space, significantly enhancing performance in complex tasks.

Beam search-based methods enhance traditional beam search by incorporating
additional dimensions such as stochasticity, self-evaluation, and diversity.

• Graph-Structured Search

They extend search strategies beyond simple tree structures, modeling outputs
explicitly as graphs to exploit relational and complex structural reasoning.

These approaches leverage classical tree search algorithms to organize potential
outputs into structured trees, explicitly exploring reasoning or planning steps.

• Tree-Structured Search

Naive Tree Search Methods (e.g., DFS, BFS) Monte-Carlo Tree Search (MCTS)

• Systematic and Optimized Search Approaches

These works provide systematic analyses, optimizations, and enhancements to
traditional search techniques, e.g., reward-balanced search.

Inference-based Approaches: Aggregation
Aggregation techniques consolidate multiple solutions into a final decision to enhance
the reliability and robustness of model predictions at test time.

Fusion

Selection

selects the best-performed sample among all candidates, where the selection
criteria may vary across different approaches.

fuses multiple samples into one through tricks like weighting or generation.

Tuning-based Approaches

1) Supervised Finetuning (SFT)
Training an LLM via next-token prediction.
Key Factor: Data (synthetic or distilled long CoTs)

2) Reinforcement Learning (RL)
By leveraging feedback from a reward model on inference tasks, the
policy model is automatically updated.

To activate a model’s ability to devote cost at test time, directly tuning its parameters
is an effective strategy.

Tuning-based Approaches: SFT

Imitation

generate long CoT demonstrations using test-time “planner” algorithms and then
fine-tune the model to imitate those demonstrations.

aim to transfer the capabilities of a stronger model (or ensemble of models) into
a target model via supervised learning.

Distillation

Warmup

refer to an initial SFT phase applied to an LLM after its unsupervised pretraining
but before other post-training steps like RL.

Chapter Credit to Haolun Wu

Tuning-based Approaches: RL
Reward Model-Free Approaches

These methods do not rely on explicitly learned reward models but instead use
intrinsic or implicit signals to guide model optimization.

These methods explicitly utilize trained reward models, typically guided by human
preferences or learned value models.

Reward Model-Based Approaches

Representative works: rule-based reward, preference optimization, Value Function,
Dynamic Sampling…

SimpleRL, DeepScaler, SimpleRL-Zoo, X-R1, TinyZero, Open-Reasoner-Zero.
OpenR, OpenRLHF, OpenR1, Logic-RL, AReaL.

Open-Source Training Frameworks

Representative works: Human-Preference Optimized Reward Models, Process-
Based Reward Model, Enhanced Reward Models…

Chapter Credit to Zexu Sun

A Visual Map and Comparison:
From What to Scale to How to Scale.

How to Scale - Taxonomy

Where to Scale - Taxonomy

Chapter Credit to Weixu Zhang, Wenyue Hua & Zhihan Guo

Summary of Benchmarks

How Well to Scale

How Well to Scale

• Controllability

• Scalability

• Efficiency

• Performance

assess the correctness of generated solutions.

assess the computational and resource cost.

evaluate whether test-time methods can consistently
adhere to pre-defined resource constraints (compute
budgets or output length targets).

measure how effectively test-time scaling methods can
leverage increased compute to improve performance.

Chapter Credit to Lei Wang

How Well to Scale - Performance

Pass@1 evaluates the correctness of a model’s first output attempt, which is
frequently used in tasks such as mathematical reasoning and coding benchmarks.

Pass@K extends Pass@1 by measuring whether at least one of the model’s k sampled
outputs is correct, which is widely adopted in program synthesis and formal theorem-
proving tasks.

Cons@k (Consensus@K) measures the majority vote correctness from k independently
sampled outputs.

Pairwise Win Rate is based on comparing against baselines using human or LLM-
based judges.

Task-Specific Metrics For instance, Codeforces Percentile and Elo Rating.

How Well to Scale - Controllability

Control Metric

Length Deviation Metric

measures the fraction of test-time compute values that stay within given upper and lower bounds.

where 𝒜 is the set of observed compute values such as thinking tokens, and (·) is the indicator
function.

Mean Deviation from Target Length quantifies the average relative difference between the
generated output length and the target length

Root Mean Squared Error (RMSE) of Length Deviation captures the variance in length control

k–ϵ Controllability

quantifies whether a model can be guided to produce a target output within a bounded prompt
length and allowable deviation.

How Well to Scale - Scalability
Scalability metrics measure how effectively test-time scaling methods can leverage
increased compute (e.g., token budgets, samples, inference steps) to improve performance.

Scaling Metric

captures the average slope of performance gains as compute increases

Scaling Curves (Accuracy vs. Compute)

visualizes how metrics such as accuracy, pass rate, or EM improve as token budgets,
iteration depth, or the number of samples increase.

How Well to Scale - Efficiency
Token Cost

measures the total number of tokens generated during inference, including intermediate
reasoning steps and final outputs.

FLOPs-based Efficiency Analysis

Underthinking score

measures how early in the response the first correct thought appears, relative to the total
length of the response, in cases where the final answer is incorrect.

Taxonomy

Existing Literature Organization using Our Taxonomy

Organization and Trends in Test-time scaling

• These techniques are complementary

• There is no one simple scaling solution that works for all problems

• The boundary between inference-based and tuning-based approaches is blurring.

Chapter Credit to Qiyuan Zhang

A Hand-on Guideline for Test-time Scaling

Open Comments supported by Our Page

Challenges and Opportunities

• Advancing Scalability is the Frontier.

• Clarifying the Essence of Techniques in Scaling is the Foundation.

• Optimizing Scaling is the Key

• Generalization across Domains is the Mainstream

More Scaling is the Frontier

Challenges:
- Diminishing returns at saturation
- Naive best-of-N lacks diversity

Opportunities:
1. Smart Coverage Expansion: Diverse reasoning
paths
2. Verifier-Augmented Sampling: Real-time filtering

Challenges:
- Coherence degradation
- Error accumulation

Opportunities:
1. Structured Self-Refinement: Targeted step repair
2. Verification-Enhanced Iteration: Real-time
consistency checks

Generalized Hybrid Scaling Architectures

Multi-Agent & Interactive Scaling

Effective Compute Allocation

Stability and Consistency

Interpretability and Controllability

Parallel Scaling Sequential Scaling

Hybrid Scaling Internal Scaling

Clarifying the Essence

1. Theoretical Gaps in Scaling Techniques

How do core techniques (SFT, RL, reward modeling) contribute to test-time scaling?
how should SFT and RL be optimally combined?

2. Re-evaluating Reward Modeling

whether PRMs actually improve multi-step inference? Does the classic reward model
incorporate noise and unnecessary complexity?

3. Mathematical Properties of Test-Time Scaling

How does performance scale with increased inference steps? Is there an optimal
stopping criterion? Are there fundamental constraints on how much test-time scaling
can improve reasoning performance?

Their roles and interactions within the pipeline demand a deeper investigation.

4. Chain-of-Thought Reasoning Priorities

Which aspects of the chain-of-thought are most crucial for effective test-time scaling?

5. Adaptive Test-Time Scaling

How can we make a model automatically adjust its inference process based on the problem at
hand? As empirical observations on certain property models show blindly scaling over test-
time may lead to over-thinking.

6. Thoughtology

How do the reasoning patterns in its language help improve reasoning effectiveness by
treating a finetuned reasoning model as an agent?

Clarifying the Essence

Optimizing TTS via Metrics

Goal: Holistic evaluation & efficient deployment

Directions to Optimize:
- Accuracy
- Efficiency
- Robustness
- Interpretability
- Bias/Safety

Trend: Multi-metric, task-sensitive optimization strategies emerging

Domain Generalization

Emerging Domains:

- Medicine

- Finance

- Law

- Math Proof & Physics

- AI Evaluation

- open-domain QA

- other high-stakes or knowledge-
intensive areas

Challenges:
1. Balancing Cost and Accuracy:

Unlike general NLP tasks, specialized domains
often require strict computational efficiency and
reliability;
2. Ensuring Domain-Specific Interpretability:

In fields like medicine and law, outputs must be
transparent and justifiable;
3. Integrating External Knowledge & Real-World

Constraints:
Many domains require retrieval-augmented

generation, real-time data analysis, or interactive query
refinement;
4. Future research must identify generalizable test-
time scaling strategies that are robust across diverse
reasoning tasks.

Conclusion

a. Structured Taxonomy

b. Practical Utility

c. Open Community

In the post-training era, TTS has been one of the dominant directions.

Our Amazing and Inspiring Team

Qiyuan Zhang
@CityU

Fuyuan Lyu
@McGill & MILA

Zexun Sun
@Gaoling RUC

Lei Wang
@Saleforce AI

Weixu Zhang
@McGill & MILA

Wenyue Hua
@UCSB

Haolun Wu
@Stanford &
McGill & MILA

Zhihan Guo
@CUHK

Yufei Wang
@Macquire

Niklas Muennighoff
@Stanford

Steve Liu
@MBZUAI &

McGill & MILA

Chen Ma
@CityU

Irwin King
@CUHK

Thanks for the invitation and your watching!

paper

Page: https://testtimescaling.github.io/

Email: qzhang732-c@my.cityu.edu.hk
fuyuan.lyu@mail.mcgill.ca

