

Fusion Matters: Learning Fusion in Deep Click-through Rate Prediction Models

Kexin Zhang*, Fuyuan Lyu^{*}, Xing Tang, Dugang Liu, Chen Ma, Kaize Ding, Xiuqiang He and Xue Liu

Fusion Design in CTR			Experiment						
			Method	Cri AUC	teo Logloss	Av AUC	azu Logloss	KD AUC	D12 Logloss
Output Block	Output Block		FNN	0.8037	0.4473	0.7860	0.3766	0.7978	0.1534
↑			PNN	0.8048	0.4463	0.7886	0.3752	0.8011	0.1527
			DCNv2s	0.8088	0.4427	0.7877	0.3753	0.8030	0.1536
MLP layer	Concatenation		DeepFM	0.8038	0.4486	0.7856	0.3806	0.7963	0.1532
1		Fixed Fusion	DCN	0.8063	0.4450	0.7875	0.3779	0.7968	0.1537
MLP layer	Cross Layer MLP layer	Operations	xDeepFM	0.8067	0.4453	0.7860	0.3773	0.7966	0.1542
<u> </u>		Cperdeletts	DCNv2p	0.8085	0.4451	0.7894	0.3759	0.8012	0.1531
Concatenation	Cross Laver MI P laver		EDCN	0.8102	0.4419	0.7917	0.3727	0.8122	0.1498
			AutoCTR	0.8082	0.4436	0.7883	0.3761	0.7949	0.1533
			NASRec	0.8090	0.4435	0.7893	0.3752	0.7958	0.1530
Inner Product	Cross Layer MLP layer	DuandaCinad	OptFuH	0.8108*	0.4413*	0.7935*	0.3717*	0.8129	0.1496
		r re-aeririea	OptFuS	0.8113*	0.4408*	0.7938*	0.3715*	0.8158*	0.1489*
Embedding Block	Embedding Block	Fusion	Impr	0.0011	0.0023	0.0021	0.0012	0.0036	0.0009

Stacked or Parallel?

Observations:

- Fusion Learning is important yet overlooked OptFusion yields best performance
- Fusion Learning is efficient

Ablation Study

OptFusion yields mid-level efficiency

OptFusion

Operation Criteo Avazu KDD12 AUC Logloss AUC Logloss AUC Logloss Add 0.8111 0.4422 0.7872 0.3970 0.7924 0.1585 Product 0.8077 0.4443 0.7860 0.3784 0.7938 0.1584 Concatenate 0.8075 0.4445 0.7837 0.3814 0.7926 0.1546 Attention 0.8073 0.4442 0.7843 0.3794 0.7883 0.1597 Hard 0.8108 0.4413 0.7935 0.3717 0.8129 0.1496								
AUC Logloss AUC Logloss AUC Logloss Add 0.8111 0.4422 0.7872 0.3970 0.7924 0.1585 Product 0.8077 0.4443 0.7860 0.3784 0.7938 0.1584 Concatenate 0.8075 0.4445 0.7837 0.3814 0.7926 0.1546 Attention 0.8073 0.4442 0.7843 0.3794 0.7883 0.1597 Hard 0.8108 0.4413 0.7935 0.3717 0.8129 0.1496	Operation	Criteo		Av	azu	KDD12		
Add0.81110.44220.78720.39700.79240.1585Product0.80770.44430.78600.37840.79380.1584Concatenate0.80750.44450.78370.38140.79260.1546Attention0.80730.44420.78430.37940.78830.1597Hard0.81080.44130.79350.37170.81290.1496	Operation	AUC	Logloss	AUC	Logloss	AUC	Logloss	
Product 0.8077 0.4443 0.7860 0.3784 0.7938 0.1584 Concatenate 0.8075 0.4445 0.7837 0.3814 0.7926 0.1546 Attention 0.8073 0.4442 0.7843 0.3794 0.7883 0.1597 Hard 0.8108 0.4413 0.7935 0.3717 0.8129 0.1496	Add	0.8111	0.4422	0.7872	0.3970	0.7924	0.1585	
Concatenate0.80750.44450.78370.38140.79260.1546Attention0.80730.44420.78430.37940.78830.1597Hard0.81080.44130.79350.37170.81290.1496	Product	0.8077	0.4443	0.7860	0.3784	0.7938	0.1584	
Attention 0.8073 0.4442 0.7843 0.3794 0.7883 0.1597 Hard 0.8108 0.4413 0.7935 0.3717 0.8129 0.1496	Concatenate	0.8075	0.4445	0.7837	0.3814	0.7926	0.1546	
Hard 0.8108 0.4413 0.7935 0.3717 0.8129 0.1496	Attention	0.8073	0.4442	0.7843	0.3794	0.7883	0.1597	
	Hard	0.8108	0.4413	0.7935	0.3717	0.8129	0.1496	
Soft 0.8113 0.4408 0.7938 0.3715 0.8158 0.1489	Soft	0.8113	0.4408	0.7938	0.3715	0.8158	0.1489	

On Fusion Operation

Number	Criteo			Avazu			
Number	AUC	Logloss	Time (h)	AUC	Logloss	Time (h)	
n=2	0.8112	0.4408	3.38h	0.7937	0.3716	1.47h	
n=3	0.8113	0.4408	4.70h	0.7938	0.3715	1.98h	
n=4	0.8115	0.4406	5.76h	0.7939	0.3717	2.67h	

On #Components

Methods	Cr	iteo	Avazu			
Methous	AUC Logloss AUC		AUC	Logloss		
One-shot	0.8113	0.4408	0.7938	0.3715		
Sequential	0.8109	0.4411	0.7934	0.3717		

 \wedge Agaragetian: $\hat{a} = a \left(\left(c \left(C \right) a \right) \right) a C \left(c \right)$

Observations:

Selecting fusion operation is necessary

- Slightly increase with #Components
- > One-shot selection is necessary

Case Study

On Selection Alg.

Solved as NAS:
$$\hat{\boldsymbol{e}}_j = \sum_{o \in \mathcal{O}} p_j^o \cdot o\left(\left\{\mathbb{I}_{\alpha_{ij}>0} \cdot \boldsymbol{e}_i\right\}\right)$$

Experiment

Fusion type indicator: ADD APROD CONCAT ATT

Interesting Observation:

Residual Connection among deep components

Summary & Future Work

- \succ Fusion Learning instead of component \blacksquare
- Fusion Connection Learning & Fusion

Operation Selection

Residual Connection among deep components

Paper